Compound |
SMILES |
Mutations |
References |
MMV021735 |
CCCCCCCN(CC1=CC=C(OC(C)(C)C(=O)OCC)C=C1)C(=O)NC1=CC=C(Cl)C=C1OCC |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC5263872::"Istvan ES, Mallari JP, et al. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat Commun. 2017;8():14240. doi:10.1038/ncomms14240"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV009063 |
OC(CNC1CCCCC1)CN1C2=CC=CC=C2C2=CC=CC=C12 |
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1179264::E321
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1179273::R318
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1179291::Y312
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1179393::Q278H
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1179397::A277V
PF3D7_0712000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::528675::S1831A
PF3D7_0908500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::392460::K1152*
PF3D7_1470100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_14_v3::2874630::T1521M
PF3D7_1474400::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_14_v3::3044825::G185
PF3D7_1478400::Plasmodium+exported+protein%2C+unknown+function%2C+pseudogene::SNP::Pf3D7_14_v3::3223665::A287S
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::1179383::-281
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::1179386::N280NC
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::1179387::-280
PF3D7_0802400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_08_v3::173370::LHEQNGK503-
PF3D7_1032200::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_10_v3::1298465::
PF3D7_1229800::myosin+D+%28MyoD%29::INDEL::Pf3D7_12_v3::1219443::
PF3D7_1235900::pre-mRNA-splicing+factor+SYF1%2C+putative+%28XAB2%29::INDEL::Pf3D7_12_v3::1499801::NNN535N
PF3D7_1247800::dipeptidyl+peptidase+2%2C+putative+%28DPAP2%29::INDEL::Pf3D7_12_v3::1970000::
PF3D7_1324300::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::1012207::GNLNIHNE2359E
PF3D7_1330500::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::1285908::KNDKND308-
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC4486462::"Fong KY, Sandlin RD, et al. Identification of β-hematin inhibitors in the MMV Malaria Box. Int J Parasitol Drugs Drug Resist. 2015;5(3):84-91. doi:10.1016/j.ijpddr.2015.05.003"
PMC3886923::"Ingram-Sieber K, Cowan N, et al. Orally Active Antischistosomal Early Leads Identified from the Open Access Malaria Box. PLoS Negl Trop Dis. 2014;8(1):e2610. doi:10.1371/journal.pntd.0002610"
|
MMV023367 |
NC1=NC=C(C=C1C1=NC2=C(N1)C=C(F)C=C2)C1=CNN=C1 |
PF3D7_1141100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_11_v3::1655458::K2046N
PF3D7_1460500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_14_v3::2468952::N954K
PF3D7_1460500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_14_v3::2468955::N955K
PF3D7_0310200::phd+finger+protein%2C+putative::INDEL::Pf3D7_03_v3::435104::-2606
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
Bafilomycin |
C[C@H]1C/C(=C\C=C/[C@@H]([C@H](OC(=O)/C(=C\C(=C\[C@H]([C@H]1O)C)\C)/OC)[C@@H](C)[C@H]([C@H](C)[C@]2(C[C@H]([C@@H]([C@H](O2)C(C)C)C)O)O)O)OC)/C |
|
|
MMV665789 |
CC(NCC1=CC=CC=C1)C1=CC(Cl)=CC=C1O |
PF3D7_1447900::multidrug+resistance+protein+2+%28heavy+metal+transport+family%29+%28MDR2%29::SNP::Pf3D7_14_v3::1955156::K840N
PF3D7_1351700::alveolin%2C+putative+%28ALV6%29::INDEL::Pf3D7_13_v3::2063327::NN1121-
PF3D7_1402000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::79418::
::::SNP::Pf3D7_06_v3::62247::n.62247C>T
PF3D7_1125100::vacuolar+membrane+protein-related%2C+putative::SNP::Pf3D7_11_v3::988073::p.Gln482Glu/c.1444C>G
PF3D7_0608100::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_06_v3::341284::p.Lys1169_Asn1174del/c.3505_3522delAAGGATCATAAGAATAAT
PF3D7_1126300::DnaJ+protein%2C+putative::INDEL::Pf3D7_11_v3::1027933::p.Asn340_Asn345del/c.1018_1035delAATGCATATCATGCAAAT
PF3D7_1322400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::951902::p.Glu197_Lys198del/c.588_593delGGAAAA
::::INDEL::Pf3D7_13_v3::1541900::n.1541900_1541901insTATTTATT
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
MMV027634 |
[Cl-].CC1=NC2=C(C(=O)N1)C1=C(C=CC(CNC3=CC=C(C=C3)C(=O)CC(CCC(O)=O)C(O)=O)=C1)C=C2 |
PF3D7_0417200::bifunctional+dihydrofolate+reductase-thymidylate+synthase+%28DHFR-TS%29::SNP::Pf3D7_04_v3::749220::G378E
PF3D7_0417200::bifunctional+dihydrofolate+reductase-thymidylate+synthase+%28DHFR-TS%29::SNP::Pf3D7_04_v3::749294::I403L
PF3D7_0417200::bifunctional+dihydrofolate+reductase-thymidylate+synthase+%28DHFR-TS%29::SNP::Pf3D7_04_v3::749738::H551N
PF3D7_1221000::histone-lysine+N-methyltransferase%2C+H3+lysine-4+specific+%28SET10%29::SNP::Pf3D7_12_v3::841694::K736
PF3D7_0412700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::566725::-873AVTSA
PF3D7_1019700::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_10_v3::801347::TNK717K
PF3D7_1121300::protein+kinase%2C+putative+%28TKL2%29::INDEL::Pf3D7_11_v3::803846::N1042KI
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC6259053::"Cowell A, Winzeler E Exploration of the Plasmodium falciparum Resistome and Druggable Genome Reveals New Mechanisms of Drug Resistance and Antimalarial Targets. Microbiol Insights. 2018;11():1178636118808529. doi:10.1177/1178636118808529"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
|
MMV010545 |
COc1ccc(cn1)-c1cnc2ccc(NCc3ccc(cc3)S(N)(=O)=O)nn12 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC5571359::"Duffy S, Sykes ML, et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother. 2017;61(9):e00379-17. doi:10.1128/AAC.00379-17"
|
Mefloquine |
c1cc2c(cc(nc2c(c1)C(F)(F)F)C(F)(F)F)[C@@H]([C@H]3CCCCN3)O |
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC6499835::"Skinner-Adams TS, Fisher GM, et al. Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Commun Biol. 2019;2():166. doi:10.1038/s42003-019-0397-3"
PMC6424564::"Istvan ES, Das S, et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife. 2019;8():e40529. doi:10.7554/eLife.40529"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC6060173::"Llanos-Cuentas A, Casapia M, et al. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infect Dis. 2018;18(8):874-883. doi:10.1016/S1473-3099(18)30309-8"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC5424201::"Dhingra SK, Redhi D, et al. A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. mBio. 2017;8(3):e00303-17. doi:10.1128/mBio.00303-17"
PMC5515376::"Kato N, Comer E, et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature. 2016;538(7625):344-349. doi:10.1038/nature19804"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4958522::"Ng CL, Siciliano G, et al. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs. Mol Microbiol. 2016;101(3):381-393. doi:10.1111/mmi.13397"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC4700930::"Baragaña B, Hallyburton I, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522(7556):315-320. doi:10.1038/nature14451"
PMC4135840::"Kuhen KL, Chatterjee AK, et al. KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrob Agents Chemother. 2014;58(9):5060-5067. doi:10.1128/AAC.02727-13"
PMC3940870::"McNamara CW, Lee MC, et al. Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria. Nature. 2013;504(7479):248-253. doi:10.1038/nature12782"
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMC3740003::"Falkard B, Santha Kumar TR, et al. A Key Role for Lipoic Acid Synthesis During Plasmodium Liver stage Development. Cell Microbiol. 2013;15(9):10.1111/cmi.12137. doi:10.1111/cmi.12137"
PMC3567157::"Bopp SE, Manary MJ, et al. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genet. 2013;9(2):e1003293. doi:10.1371/journal.pgen.1003293"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC3050001::"Rottmann M, McNamara C, et al. Spiroindolones, a new and potent chemotype for the treatment of malaria. Science. 2010;329(5996):1175-1180. doi:10.1126/science.1193225"
PMC7245149::"Opoka RO, Waiswa A, et al. Blackwater Fever in Ugandan Children With Severe Anemia is Associated With Poor Postdischarge Outcomes: A Prospective Cohort Study. Clin Infect Dis. 2019;70(11):2247-2254. doi:10.1093/cid/ciz648"
PMC7221129::"Ribeiro BG, Guerra JM, et al. Potential Food Application of a Biosurfactant Produced by Saccharomyces cerevisiae URM 6670. Front Bioeng Biotechnol. 2020;8():434. doi:10.3389/fbioe.2020.00434"
PMC7238349::"Oladeji OS, Oluyori AP, et al. Natural Products as Sources of Antimalarial Drugs: Ethnobotanical and Ethnopharmacological Studies. Scientifica (Cairo). 2020;2020():7076139. doi:10.1155/2020/7076139"
PMC7231166::"Huang J, Song W, et al. Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. J Clin Med. 2020;9(4):1131. doi:10.3390/jcm9041131"
PMC7230338::"Napoli PE, Nioi M Global Spread of Coronavirus Disease 2019 and Malaria: An Epidemiological Paradox in the Early Stage of A Pandemic. J Clin Med. 2020;9(4):1138. doi:10.3390/jcm9041138"
PMC7241405::"Hui DS, Azhar EI, et al. Human Coronavirus Infections—Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and SARS-CoV-2. Reference Module in Biomedical Sciences. 2020;():B978-0-12-801238-3.11634-4. doi:10.1016/B978-0-12-801238-3.11634-4"
PMC7221697::"Domes C, Frosch T, et al. Rapid Raman Spectroscopic Analysis of Stress Induced Degradation of the Pharmaceutical Drug Tetracycline. Molecules. 2020;25(8):1866. doi:10.3390/molecules25081866"
PMC7218657::"Ansbro MR, Jacob CG, et al. Development of copy number assays for detection and surveillance of piperaquine resistance associated plasmepsin 2/3 copy number variation in Plasmodium falciparum. Malar J. 2020;19():181. doi:10.1186/s12936-020-03249-x"
PMC7197940::"Lin LY, Li J, et al. Trends in Molecular Markers Associated with Resistance to Sulfadoxine-Pyrimethamine (SP) Among Plasmodium falciparum Isolates on Bioko Island, Equatorial Guinea: 2011–2017. Infect Drug Resist. 2020;13():1203-1212. doi:10.2147/IDR.S236898"
PMC7226351::"Rajaratnam V, Islam MM, et al. Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers (Basel). 2020;12(4):937. doi:10.3390/cancers12040937"
PMC7196193::"Malebo HM, D’Alessandro S, et al. In vitro Multistage Malaria Transmission Blocking Activity of Selected Malaria Box Compounds. Drug Des Devel Ther. 2020;14():1593-1607. doi:10.2147/DDDT.S242883"
PMC7219724::"Masic I, Naser N, et al. Public Health Aspects of COVID-19 Infection with Focus on Cardiovascular Diseases. Mater Sociomed. 2020;32(1):71-76. doi:10.5455/msm.2020.32.71-76"
PMC7213813::"Meteke S, Stefopulos M, et al. Delivering infectious disease interventions to women and children in conflict settings: a systematic review. BMJ Glob Health. 2020;5(Suppl 1):e001967. doi:10.1136/bmjgh-2019-001967"
PMC7204294::"Darko SN, Hanson H, et al. Three monthly doses of 60 mg/kg praziquantel for Schistosoma haematobium infection is a safe and effective treatment regimen. BMC Infect Dis. 2020;20():323. doi:10.1186/s12879-020-05053-z"
PMC7204160::"Huang Y, Wang Y, et al. Autophagy Contributes to Host Immunity and Protection against Zika Virus Infection via Type I IFN Signaling. Mediators Inflamm. 2020;2020():9527147. doi:10.1155/2020/9527147"
PMC7217694::"Mathieu LC, Cox H, et al. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. eLife. 2020;9():e51015. doi:10.7554/eLife.51015"
PMC7211740::"Patil VM, Singhal S, et al. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci. 2020;():117775. doi:10.1016/j.lfs.2020.117775"
PMC7205369::"Lother SA, Abassi M, et al. Post-exposure prophylaxis or pre-emptive therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): study protocol for a pragmatic randomized-controlled trial. Can J Anaesth. 2020;():1-11. doi:10.1007/s12630-020-01684-7"
PMC7200320::"Throckmorton L, Hancher J Management of Travel-Related Infectious Diseases in the Emergency Department. Curr Emerg Hosp Med Rep. 2020;():1-10. doi:10.1007/s40138-020-00213-6"
PMC7190888::"Sugiarto SR, Moore BR, et al. Artemisinin Therapy for Malaria in Hemoglobinopathies: A Systematic Review. Clin Infect Dis. 2018;66(5):799-804. doi:10.1093/cid/cix785"
PMC7156057::"Izes AM, Kimble B, et al. In vitro hepatic metabolism of mefloquine using microsomes from cats, dogs and the common brush-tailed possum (Trichosurus vulpecula). PLoS One. 2020;15(4):e0230975. doi:10.1371/journal.pone.0230975"
PMC7209236::"The PLOS ONE Staff. Correction: In vitro hepatic metabolism of mefloquine using microsomes from cats, dogs and the common brush-tailed possum (Trichosurus vulpecula). PLoS One. 2020;15(5):e0233223. doi:10.1371/journal.pone.0233223"
PMID31844010::"Vieira JLF, Rivera JGB, et al. Association of Lipid Levels with Mefloquine and Carboxy-Mefloquine Concentrations in Patients with Uncomplicated Falciparum Malaria.. Antimicrob Agents Chemother. 2020;64(3):. doi:3"
PMID32211790::"Roesch C, Mairet-Khedim M, et al. Impact of the first-line treatment shift from dihydroartemisinin/piperaquine to artesunate/mefloquine on Plasmodium vivax drug susceptibility in Cambodia.. J Antimicrob Chemother. 2020;():. doi:3"
PMID31907188::"Montoya MC, Beattie S, et al. Derivatives of the Antimalarial Drug Mefloquine Are Broad-Spectrum Antifungal Molecules with Activity against Drug-Resistant Clinical Isolates.. Antimicrob Agents Chemother. 2020;64(3):. doi:3"
PMID31987860::"Kumar A, Ghosh DK, et al. Mefloquine binding to human acyl-CoA binding protein leads to redox stress-mediated apoptotic death of human neuroblastoma cells.. Neurotoxicology. 2020;77():169-180. doi:3"
PMID32171078::"van der Pluijm RW, Tripura R, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial.. Lancet. 2020;395(10233):1345-1360. doi:3"
PMID32369311::"National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Committee to Review Long-Term Health Effects of Antimalarial Drugs; Board on Population Health and Public Health Practice, Styka AN, et al. . . 2020;():. doi:3"
PMID32086266::"Williamson V, Blamey H, et al. Mefloquine for malaria prophylaxis in military personnel.. BMJ Mil Health. 2020;():. doi:3"
PMID32419013::"McKinney KL, Wu HM, et al. Malaria in the Pregnant Traveler.. J Travel Med. 2020;():. doi:3"
PMID31997155::"Ding D, Zhang J, et al. Some Ototoxic Drugs Destroy Cochlear Support Cells Before Damaging Sensory Hair Cells.. Neurotox Res. 2020;37(3):743-752. doi:3"
PMID31621878::Nevin RL. Symptomatic Mefloquine Exposure as a Common Data Element in Studies of Military-Related Post Traumatic Stress Disorder.. Mil Med. 2020;185(1-2):16. doi:3
PMID32342855::"Hickey PW, Mitra I, et al. Deployment and Travel Medicine Knowledge, Attitudes, Practices, and Outcomes Study: Malaria Chemoprophylaxis Prescription Patterns in the Military Health System.. Am J Trop Med Hyg. 2020;():. doi:3"
PMC7123058::"Hidalgo J, Arriaga P, et al. Management of Severe Malaria. Evidence-Based Critical Care. 2016;():495-508. doi:10.1007/978-3-319-43341-7_57"
PMC7120727::"Hidalgo J, Arriaga P, et al. Management of Severe Malaria. Evidence-Based Critical Care. 2019;():481-492. doi:10.1007/978-3-030-26710-0_64"
PMID31639093::"Zorc B, Rajić Z, et al. Antiproliferative evaluation of various aminoquinoline derivatives.. Acta Pharm. 2019;69(4):661-672. doi:3"
|
MMV665888 |
OC1=C(NC(=O)C2=CC=C(OC3=CC=CC(=C3)C(=O)NC3=C(O)C=CC=C3)C=C2)C=CC=C1 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC4486462::"Fong KY, Sandlin RD, et al. Identification of β-hematin inhibitors in the MMV Malaria Box. Int J Parasitol Drugs Drug Resist. 2015;5(3):84-91. doi:10.1016/j.ijpddr.2015.05.003"
|
MMV1451822 |
Fc1ccc(cc1)-c1noc(CN(Cc2ccco2)Cc2ccc(cc2)C(=O)NC2CC2)n1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV006357 |
Cc1ccnc(Nc2nc(cs2)c3ccccn3)c1 |
|
PMC5940239::"Lim W, Melse Y, et al. Addressing the most neglected diseases through an open research model: The discovery of fenarimols as novel drug candidates for eumycetoma. PLoS Negl Trop Dis. 2018;12(4):e0006437. doi:10.1371/journal.pntd.0006437"
|
MMV064286 |
CC1=NN2C=C(N=C2SC1C1=CC=CC=C1)C1=CC=CC=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV023985 |
COc1ccc(cc1OC)-c1cnc2ccc(nn12)N1CCCC1 |
|
PMC6805474::"Maccesi M, Aguiar PH, et al. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors. 2019;12():493. doi:10.1186/s13071-019-3747-6"
PMC6376154::"Nyagwange J, Awino E, et al. Leveraging the Medicines for Malaria Venture malaria and pathogen boxes to discover chemical inhibitors of East Coast fever. Int J Parasitol Drugs Drug Resist. 2019;9():80-86. doi:10.1016/j.ijpddr.2019.01.002"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC5571359::"Duffy S, Sykes ML, et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother. 2017;61(9):e00379-17. doi:10.1128/AAC.00379-17"
|
MMV032967 |
FC(F)(F)c1cccc(c1)c2nc3c(NCc4ccncc4)nccc3[nH]2 |
|
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC5826141::"Tong JX, Chandramohanadas R, et al. High-Content Screening of the Medicines for Malaria Venture Pathogen Box for Plasmodium falciparum Digestive Vacuole-Disrupting Molecules Reveals Valuable Starting Points for Drug Discovery. Antimicrob Agents Chemother. 2018;62(3):e02031-17. doi:10.1128/AAC.02031-17"
|
MMV1147256 |
Cn1c(NCC2CC2)nc3cnc(cc13)c4ccc5ccccc5c4 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
Brefeldin A |
C[C@H]1CCC/C=C/[C@@H]2C[C@@H](C[C@H]2[C@@H](/C=C/C(=O)O1)O)O |
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC7251643::"Vaccari M, Boasso A, et al. CD4 + T-cell loss and delayed expression of modulators of immune responses at mucosal sites of vaccinated macaques following SIVmac 251 infection. Mucosal Immunol. 2008;1(6):497-507. doi:10.1038/mi.2008.60"
PMC7242909::"Davidson S, Efremova M, et al. Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth. Cell Rep. 2020;31(7):107628. doi:10.1016/j.celrep.2020.107628"
PMC7245055::"Eeda V, Herlea-Pana O, et al. Discovery of N-(2-(Benzylamino)-2-oxoethyl)benzamide analogs as a Novel Scaffold of Pancreatic β-cell Protective Agents against ER Stress. Chem Biol Drug Des. 2019;95(3):388-393. doi:10.1111/cbdd.13650"
PMC7232718::"Mao J, Zhang SZ, et al. Probiotics Can Boost the Antitumor Immunity of CD8+T Cells in BALB/c Mice and Patients with Colorectal Carcinoma. J Immunol Res. 2020;2020():4092472. doi:10.1155/2020/4092472"
PMC7232437::"Rice BL, Lochmann TL, et al. RNA-Binding Domains of Heterologous Viral Proteins Substituted for Basic Residues in the RSV Gag NC Domain Restore Specific Packaging of Genomic RNA. Viruses. 2020;12(4):370. doi:10.3390/v12040370"
PMC7230720::"Sturm R, Xanthopoulos L, et al. Regulatory T Cells Modulate CD4 Proliferation after Severe Trauma via IL-10. J Clin Med. 2020;9(4):1052. doi:10.3390/jcm9041052"
PMC7231852::"Hewitson JP, West KA, et al. Malat1 Suppresses Immunity to Infection through Promoting Expression of Maf and IL-10 in Th Cells. J Immunol. 2020;204(11):2949-2960. doi:10.4049/jimmunol.1900940"
PMC7234810::"Vacca F, Chauché C, et al. A helminth-derived suppressor of ST2 blocks allergic responses. eLife. 2020;9():e54017. doi:10.7554/eLife.54017"
PMC7218610::"Wang J, Poliquin S, et al. Endoplasmic reticulum retention and degradation of a mutation in SLC6A1 associated with epilepsy and autism. Mol Brain. 2020;13():76. doi:10.1186/s13041-020-00612-6"
PMC7235948::"Dee RA, Mangum KD, et al. Druggable Targets in the Rho pathway and their promise for therapeutic control of blood pressure. Pharmacol Ther. 2018;193():121-134. doi:10.1016/j.pharmthera.2018.09.001"
PMC7233287::"Schmolka N, Papotto PH, et al. MicroRNA-146a controls functional plasticity in γδ T cells by targeting NOD1. Sci Immunol. 2018;3(23):eaao1392. doi:10.1126/sciimmunol.aao1392"
PMC7226784::"Roby JA, Esser-Nobis K, et al. Flavivirus Nonstructural Protein NS5 Dysregulates HSP90 to Broadly Inhibit JAK/STAT Signaling. Cells. 2020;9(4):899. doi:10.3390/cells9040899"
PMC7226590::"Asadzadeh Z, Safarzadeh E, et al. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers (Basel). 2020;12(4):1047. doi:10.3390/cancers12041047"
PMC7218548::"Tsukui H, Horie H, et al. CD73 blockade enhances the local and abscopal effects of radiotherapy in a murine rectal cancer model. BMC Cancer. 2020;20():411. doi:10.1186/s12885-020-06893-3"
PMC7212400::"Baudesson de Chanville C, Chousterman BG, et al. Sepsis Triggers a Late Expansion of Functionally Impaired Tissue-Vascular Inflammatory Monocytes During Clinical Recovery. Front Immunol. 2020;11():675. doi:10.3389/fimmu.2020.00675"
PMC7223088::"Zhu FF, Wang YM, et al. Different effects of acetyl-CoA carboxylase inhibitor TOFA on airway inflammation and airway resistance in a mice model of asthma. Pharmacol Rep. 2020;():1-10. doi:10.1007/s43440-019-00027-8"
PMC7221214::"Huber JE, Ahlfeld J, et al. Dynamic changes in circulating T follicular helper cell composition predict neutralising antibody responses after yellow fever vaccination. Clin Transl Immunology. 2020;9(5):e1129. doi:10.1002/cti2.1129"
PMC7220377::"Madel MB, Ibáñez L, et al. Dissecting the phenotypic and functional heterogeneity of mouse inflammatory osteoclasts by the expression of Cx3cr1. eLife. 2020;9():e54493. doi:10.7554/eLife.54493"
PMC7221577::"Xi J, Xu M, et al. Stimulatory role of interleukin 10 in CD8+ T cells through STATs in gastric cancer. Tumour Biol. 2017;39(5):1010428317706209. doi:10.1177/1010428317706209"
PMC7214906::"Yu X, Chen D, et al. Wogonoside inhibits inflammatory cytokine production in lipopolysaccharide-stimulated macrophage by suppressing the activation of the JNK/c-Jun signaling pathway. Ann Transl Med. 2020;8(8):532. doi:10.21037/atm.2020.04.22"
PMID32333796::"Walton K, Leier A, et al. Regulating the regulators: role of phosphorylation in modulating the function of the GBF1/BIG family of Sec7 ARF-GEFs.. FEBS Lett. 2020;():. doi:3"
PMID32445404::"Jiménez-Vázquez KR, García-Cárdenas E, et al. The plant beneficial rhizobacterium Achromobacter sp. 5B1 influences root development through auxin signaling and redistribution.. Plant J. 2020;():. doi:3"
PMID31455610::"Manchalu S, Mittal N, et al. Local translation of yeast <i>ERG4</i> mRNA at the endoplasmic reticulum requires the brefeldin A resistance protein Bfr1.. RNA. 2019;25(12):1661-1672. doi:3"
PMC7016842::"Bourgoin P, Biéchelé G, et al. Role of the interferons in CD64 and CD169 expressions in whole blood: Relevance in the balance between viral‐ or bacterial‐oriented immune responses. Immun Inflamm Dis. 2020;8(1):106-123. doi:10.1002/iid3.289"
PMID31359455::"Gnägi L, Martz SV, et al. A Short Synthesis of (+)-Brefeldin C through Enantioselective Radical Hydroalkynylation.. Chemistry. 2019;25(50):11646-11649. doi:3"
PMC7209632::"Rouhimoghadam M, Dong J, et al. SAT-LB137 Rescue of Misfolded G-Protein Coupled Estrogen Receptor, GPER, from the Endoplasmic Reticulum via Natural and Synthetic Estrogens. J Endocr Soc. 2020;4(Suppl 1):SAT-LB137. doi:10.1210/jendso/bvaa046.1976"
PMC7165155::"Rauh R, Frost F, et al. Effects of syntaxins 2, 3, and 4 on rat and human epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Pflugers Arch. 2020;472(4):461-471. doi:10.1007/s00424-020-02365-6"
PMID31610914::"Dejgaard SY, Presley JF Rab18 regulates lipolysis via Arf/GBF1 and adipose triglyceride lipase.. Biochem Biophys Res Commun. 2019;520(3):526-531. doi:3"
PMID31318334::"Lee D, Jayaraman A, et al. Identification of a time-varying intracellular signalling model through data clustering and parameter selection: application to NF-[inline-formula removed]B signalling pathway induced by LPS in the presence of BFA.. IET Syst Biol. 2019;13(4):169-179. doi:3"
PMC6994954::"Clark EM, Nonarath HJ, et al. Establishment and validation of an endoplasmic reticulum stress reporter to monitor zebrafish ATF6 activity in development and disease. Dis Model Mech. 2020;13(1):dmm041426. doi:10.1242/dmm.041426"
PMID31630542::"Girard BM, Campbell SE, et al. TRPV4 blockade reduces voiding frequency, ATP release, and pelvic sensitivity in mice with chronic urothelial overexpression of NGF.. Am J Physiol Renal Physiol. 2019;317(6):F1695-F1706. doi:3"
PMID32291281::"Ramzy A, Asadi A, et al. Revisiting Proinsulin Processing: Evidence That Human β-Cells Process Proinsulin With Prohormone Convertase (PC) 1/3 But Not PC2.. Diabetes. 2020;():. doi:3"
PMID31602905::"Bai J, Wu YK, et al. [Triptolide induces autophagy of ovarian granulosa cells via PI3K/AKT/m TOR pathway].. Zhongguo Zhong Yao Za Zhi. 2019;44(16):3429-3434. doi:3"
PMC7099879::"Busse M, Campe KN, et al. Regulatory B Cells Are Decreased and Impaired in Their Function in Peripheral Maternal Blood in Pre-term Birth. Front Immunol. 2020;11():386. doi:10.3389/fimmu.2020.00386"
PMID32420623::Robinson DG. Plant Golgi ultrastructure.. J Microsc. 2020;():. doi:3
PMC6399112::"Bugliani M, Mossuto S, et al. Modulation of Autophagy Influences the Function and Survival of Human Pancreatic Beta Cells Under Endoplasmic Reticulum Stress Conditions and in Type 2 Diabetes. Front Endocrinol (Lausanne). 2019;10():52. doi:10.3389/fendo.2019.00052"
PMID31111546::"Liu K, Liu Y, et al. Regulatory role of Golgi brefeldin A resistance factor-1 in amyloid precursor protein trafficking, cleavage and Aβ formation.. J Cell Biochem. 2019;120(9):15604-15615. doi:3"
PMID30711700::"Zeng F, Chen C, et al. Dibrefeldins A and B, A pair of epimers representing the first brefeldin A dimers with cytotoxic activities from Penicillium janthinellum.. Bioorg Chem. 2019;86():176-182. doi:3"
PMID31206981::"Park SH, Ko W, et al. Evaluation of the Interaction between Bax and Hsp70 in Cells by Using a FRET System Consisting of a Fluorescent Amino Acid and YFP as a FRET Pair.. Chembiochem. 2020;21(1-2):59-63. doi:3"
PMC6845012::"Zhang Q, Liu S, et al. AGE-RELATED ELEVATED CD4+ T HELPER 17 CELL RESPONSE PROMOTES PROSTATE CANCER CELL GROWTH, MIGRATION, AND INVASION. Innov Aging. 2019;3(Suppl 1):S879. doi:10.1093/geroni/igz038.3221"
PMC7171323::"Rath M, Dümmer M, et al. A gravitropic stimulus alters the distribution of EHB1, a negative effector of root gravitropism in Arabidopsis. Plant Direct. 2020;4(4):e00215. doi:10.1002/pld3.215"
PMID32305494::"Markouli M, Strepkos D, et al. Targeting of endoplasmic reticulum (ER) stress in gliomas.. Pharmacol Res. 2020;157():104823. doi:3"
|
MMV676881 |
CCn1cnc2c(Nc3cc(F)cc(F)c3)nc(nc12)C#N |
|
PMC6805474::"Maccesi M, Aguiar PH, et al. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors. 2019;12():493. doi:10.1186/s13071-019-3747-6"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
|
MMV673964 |
CN(C)CCCNCC1=CC=C(O1)C1=CC=C(Cl)C(Cl)=C1 |
|
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
ACT-451840 |
O=C([C@H](CC1=CC=CC=C1)N(CC2=CC=C(N3CCN(C(C)=O)CC3)C=C2)C(/C=C/C4=CC=C(C(C)(C)C)C=C4)=O)N5CCN(CC6=CC=C(C#N)C=C6)CC5 |
PF3D7_0523000::multidrug+resistance+protein+%28MDR1%29::SNP::Pf3D7_05_v3::958835::G316R
PF3D7_0523000::multidrug+resistance+protein+%28MDR1%29::SNP::Pf3D7_05_v3::960308::A807T
PF3D7_0523000::multidrug+resistance+protein+%28MDR1%29::SNP::Pf3D7_05_v3::960412::M841I
PF3D7_0833500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::1440344::V1036L
PF3D7_1241700::replication+factor+C+subunit+4%2C+putative::SNP::Pf3D7_12_v3::1778278::S42T
PF3D7_1252600::lysophospholipase%2C+putative::SNP::Pf3D7_12_v3::2150775::K74N
PF3D7_0833500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_08_v3::1440347::D1034ETA
PF3D7_1222600::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_12_v3::910707::-1169
|
PMC6553790::"Stokes BH, Yoo E, et al. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog. 2019;15(6):e1007722. doi:10.1371/journal.ppat.1007722"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC4958522::"Ng CL, Siciliano G, et al. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs. Mol Microbiol. 2016;101(3):381-393. doi:10.1111/mmi.13397"
PMC7198115::"Andrews KA, Wesche D, et al. Model-Informed Drug Development for Malaria Therapeutics. Annu Rev Pharmacol Toxicol. 2017;58():567-582. doi:10.1146/annurev-pharmtox-010715-103429"
PMC7064600::"Burgert L, Rottmann M, et al. Ensemble modeling highlights importance of understanding parasite-host behavior in preclinical antimalarial drug development. Sci Rep. 2020;10():4410. doi:10.1038/s41598-020-61304-8"
PMC6477837::"Marin-Mogollon C, Salman AM, et al. A P. falciparum NF54 Reporter Line Expressing mCherry-Luciferase in Gametocytes, Sporozoites, and Liver-Stages. Front Cell Infect Microbiol. 2019;9():96. doi:10.3389/fcimb.2019.00096"
PMC6431062::"Tse EG, Korsik M, et al. The past, present and future of anti-malarial medicines. Malar J. 2019;18():93. doi:10.1186/s12936-019-2724-z"
PMC6431002::"Hooft van Huijsduijnen R, Wells T, et al. Two successful decades of Swiss collaborations to develop new anti-malarials. Malar J. 2019;18():94. doi:10.1186/s12936-019-2728-8"
PMC6259053::"Cowell A, Winzeler E Exploration of the Plasmodium falciparum Resistome and Druggable Genome Reveals New Mechanisms of Drug Resistance and Antimalarial Targets. Microbiol Insights. 2018;11():1178636118808529. doi:10.1177/1178636118808529"
PMC6256810::"Gibhard L, Njoroge M, et al. Investigating Sulfoxide-to-Sulfone Conversion as a Prodrug Strategy for a Phosphatidylinositol 4-Kinase Inhibitor in a Humanized Mouse Model of Malaria. Antimicrob Agents Chemother. 2018;62(12):e00261-18. doi:10.1128/AAC.00261-18"
PMC6013505::"Ashley EA, Phyo AP Drugs in Development for Malaria. Drugs. 2018;78(9):861-879. doi:10.1007/s40265-018-0911-9"
PMC5954013::"Grzybek M, Golonko A, et al. The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites. Appl Microbiol Biotechnol. 2018;102(11):4629-4640. doi:10.1007/s00253-018-8927-3"
PMC5881087::"Meier A, Erler H, et al. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem. 2018;6():88. doi:10.3389/fchem.2018.00088"
PMC6371404::"Haldar K, Bhattacharjee S, et al. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018;16(3):156-170. doi:10.1038/nrmicro.2017.161"
PMC5732164::"Dechering KJ, Duerr HP, et al. Modelling mosquito infection at natural parasite densities identifies drugs targeting EF2, PI4K or ATP4 as key candidates for interrupting malaria transmission. Sci Rep. 2017;7():17680. doi:10.1038/s41598-017-16671-0"
PMC5660193::"Chiu JE, Thekkiniath J, et al. The antimalarial activity of the pantothenamide α-PanAm is via inhibition of pantothenate phosphorylation. Sci Rep. 2017;7():14234. doi:10.1038/s41598-017-14074-9"
PMC5442318::"Miguel-Blanco C, Molina I, et al. Hundreds of dual-stage antimalarial molecules discovered by a functional gametocyte screen. Nat Commun. 2017;8():15160. doi:10.1038/ncomms15160"
PMC5074466::"Kesely KR, Pantaleo A, et al. Inhibition of an Erythrocyte Tyrosine Kinase with Imatinib Prevents Plasmodium falciparum Egress and Terminates Parasitemia. PLoS One. 2016;11(10):e0164895. doi:10.1371/journal.pone.0164895"
PMC5049785::"Le Bihan A, de Kanter R, et al. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling. PLoS Med. 2016;13(10):e1002138. doi:10.1371/journal.pmed.1002138"
PMC5012946::"Lander N, Chiurillo MA, et al. Genome Editing by CRISPR/Cas9: a Game Change in the Genetic Manipulation of Protists. J Eukaryot Microbiol. 2016;63(5):679-690. doi:10.1111/jeu.12338"
PMID27471138::"Boss C, Aissaoui H, et al. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action.. ChemMedChem. 2016;11(18):1995-2014. doi:3"
PMC4335896::"Bruderer S, Hurst N, et al. First-in-Humans Study of the Safety, Tolerability, and Pharmacokinetics of ACT-451840, a New Chemical Entity with Antimalarial Activity. Antimicrob Agents Chemother. 2015;59(2):935-942. doi:10.1128/AAC.04125-14"
PMC4972157::"Krause A, Dingemanse J, et al. Pharmacokinetic/pharmacodynamic modelling of the antimalarial effect of Actelion‐451840 in an induced blood stage malaria study in healthy subjects. Br J Clin Pharmacol. 2016;82(2):412-421. doi:10.1111/bcp.12962"
|
MMV407834 |
CCOc1ccccc1NC(C)C(=O)Nc1cc(ccc1N1CCOCC1)C(F)(F)F |
|
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
|
MMV000248 |
Cl.CCN(CC)CCn1c2ccccc2n(CC(O)c2ccc(Cl)c(Cl)c2)c1=N |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5683671::"Chirawurah JD, Ansah F, et al. Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates. Int J Parasitol Drugs Drug Resist. 2017;7(3):399-406. doi:10.1016/j.ijpddr.2017.10.005"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC4751939::"Khraiwesh M, Leed S, et al. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box against Intracellular Leishmania major Amastigotes. Am J Trop Med Hyg. 2016;94(2):340-347. doi:10.4269/ajtmh.15-0448"
PMC4486462::"Fong KY, Sandlin RD, et al. Identification of β-hematin inhibitors in the MMV Malaria Box. Int J Parasitol Drugs Drug Resist. 2015;5(3):84-91. doi:10.1016/j.ijpddr.2015.05.003"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
|
MMV019719 |
COC1=CC=C(C=C1)C1=C(C)SC(NC(=O)CC2=CC=C3OCCOC3=C2)=N1 |
PF3D7_0404600::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_04_v3::254281::K2184I
PF3D7_1238800::acyl-CoA+synthetase+%28ACS11%29::SNP::Pf3D7_12_v3::1611521::F387V
PF3D7_1247600::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1964182::F26S
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV085203 |
COc1ccccc1/N=C/2\C(=O)c3ccccc3C(=C2N4CCCCC4)O |
::::SNP::Pf3D7_01_v3::9790::n.9790A>C
::::SNP::Pf3D7_01_v3::9793::n.9793A>T
::::SNP::Pf3D7_01_v3::9806::n.9806G>C
::::SNP::Pf3D7_01_v3::9808::n.9808C>T
::::SNP::Pf3D7_01_v3::9809::n.9809T>G
::::SNP::Pf3D7_01_v3::9811::n.9811C>G
::::SNP::Pf3D7_01_v3::9813::n.9813A>G
::::SNP::Pf3D7_01_v3::9818::n.9818T>A
::::SNP::Pf3D7_02_v3::746022::n.746022A>G
PF3D7_0312500::transporter%2C+putative::SNP::Pf3D7_03_v3::530238::p.Cys401Tyr/c.1202G>A
PF3D7_0312500::transporter%2C+putative::SNP::Pf3D7_03_v3::530495::p.Gln487Glu/c.1459C>G
PF3D7_0312500::transporter%2C+putative::SNP::Pf3D7_03_v3::530592::p.Ser519*/c.1556C>A
::::SNP::Pf3D7_03_v3::603731::n.603731A>T
PF3D7_0823000::protein+kinase%2C+putative::SNP::Pf3D7_08_v3::1014436::p.Asn830Lys/c.2490T>A
PF3D7_0918800::dihydrouridine+synthase%2C+putative::SNP::Pf3D7_09_v3::772804::p.Asn526Asp/c.1576A>G
PF3D7_1227200::potassium+channel+%28K1%29::SNP::Pf3D7_12_v3::1102116::p.Asp1330Tyr/c.3988G>T
::::INDEL::Pf3D7_01_v3::174669::n.174669_174670insATAAATACATTC
PF3D7_0221700::Plasmodium+exported+protein%2C+unknown+function::INDEL::Pf3D7_02_v3::870801::p.Asp63_Glu64insProLysProTerThrLeuAsnPro/c.188_189insCCCTAAACCCTAAACCCTGAACCC
PF3D7_0312500::transporter%2C+putative::INDEL::Pf3D7_03_v3::529867::p.Asn279fs/c.836delA
PF3D7_0718000::dynein+heavy+chain%2C+putative::INDEL::Pf3D7_07_v3::776396::c.17425+62_17425+65delAATA
PF3D7_0812100::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_08_v3::608887::p.Thr1326_Thr1335del/c.3977_4006delCTGTTTCGCCACACAAATCAAATGATACAA
PF3D7_1233600::asparagine+and+aspartate+rich+protein+1+%28AARP1%29::INDEL::Pf3D7_12_v3::1395449::p.Asp3256_Asn3262del/c.9766_9786delGATAATATATATGGTGATAAT
PF3D7_1372200::histidine-rich+protein+III+%28HRPIII%29::INDEL::Pf3D7_13_v3::2841183::p.His119_His124del/c.354_371delCCATGCAGCTAATGCTCA
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6938011::"de Souza GE, Bueno RV, et al. Antiplasmodial profile of selected compounds from Malaria Box: in vitro evaluation, speed of action and drug combination studies. Malar J. 2019;18():447. doi:10.1186/s12936-019-3069-3"
PMC5683671::"Chirawurah JD, Ansah F, et al. Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates. Int J Parasitol Drugs Drug Resist. 2017;7(3):399-406. doi:10.1016/j.ijpddr.2017.10.005"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC5247447::"Montazeri M, Sharif M, et al. A Systematic Review of In vitro and In vivo Activities of Anti-Toxoplasma Drugs and Compounds (2006–2016). Front Microbiol. 2017;8():25. doi:10.3389/fmicb.2017.00025"
PMC5049785::"Le Bihan A, de Kanter R, et al. Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling. PLoS Med. 2016;13(10):e1002138. doi:10.1371/journal.pmed.1002138"
PMC4808229::"Lucantoni L, Fidock DA, et al. Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes. Antimicrob Agents Chemother. 2016;60(4):2097-2107. doi:10.1128/AAC.01949-15"
PMC4249523::"Ruecker A, Mathias DK, et al. A Male and Female Gametocyte Functional Viability Assay To Identify Biologically Relevant Malaria Transmission-Blocking Drugs. Antimicrob Agents Chemother. 2014;58(12):7292-7302. doi:10.1128/AAC.03666-14"
PMC4187973::"Boyom FF, Fokou PV, et al. Repurposing the Open Access Malaria Box To Discover Potent Inhibitors of Toxoplasma gondii and Entamoeba histolytica. Antimicrob Agents Chemother. 2014;58(10):5848-5854. doi:10.1128/AAC.02541-14"
PMID31494399::"Rizk MA, El-Sayed SAE, et al. Discovering the in vitro potent inhibitors against Babesia and Theileria parasites by repurposing the Malaria Box: A review.. Vet Parasitol. 2019;274():108895. doi:3"
PMC6273446::"Tiwari NK, Reynolds PJ, et al. Preliminary LC-MS Based Screening for Inhibitors of Plasmodium falciparum Thioredoxin Reductase (PfTrxR) among a Set of Antimalarials from the Malaria Box. Molecules. 2016;21(4):424. doi:10.3390/molecules21040424"
|
primaquine |
CC(CCCN)NC1=C(N=CC=C2)C2=CC(OC)=C1 |
PF3D7_0402300::reticulocyte+binding+protein+homologue+1%2Cnormocyte+binding+protein+1+%28RH1%29::SNP::Pf3D7_04_v3::138507::p.Arg257Ile/c.770G>T
PF3D7_0600600::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+exon+2+%28VAR%29::SNP::Pf3D7_06_v3::30016::p.Leu309Leu/c.925C>T
PF3D7_0619300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_06_v3::808639::p.Ile1972Val/c.5914A>G
PF3D7_0711700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::517510::p.Phe639Tyr/c.1916T>A
PF3D7_0711700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::517512::p.Asn638Asn/c.1914T>C
PF3D7_0801800::mannose-6-phosphate+isomerase%2C+putative::SNP::Pf3D7_08_v3::121596::p.Glu158*/c.472G>T
PF3D7_0833500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::1436556::p.Ile2016Ile/c.6048T>A
PF3D7_0833500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::1436559::p.Ser2015Ser/c.6045T>C
PF3D7_0833500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::1436563::p.Thr2014Ile/c.6041C>T
PF3D7_1321100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::861462::p.Lys3442Gln/c.10324A>C
PF3D7_1432200::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_14_v3::1264173::p.Phe116Phe/c.348C>T
PF3D7_1432200::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_14_v3::1264177::p.Leu118Val/c.352T>G
PF3D7_0218600::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_02_v3::756990::p.Lys526fs/c.1577_1578insCAAAA
PF3D7_0218600::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_02_v3::758412::p.Phe1000fs/c.3000delT
PF3D7_0310200::phd+finger+protein%2C+putative::INDEL::Pf3D7_03_v3::435104::p.Val2606fs/c.7816_7876delGTAGATGTAGACCACAAAATGGTAGATGTAGACCACAAAATGGTAGATGTAGACCACAAAA
PF3D7_0311700::plasmepsin+VI::INDEL::Pf3D7_03_v3::503211::c.399-79_399-75delAAAAA
PF3D7_0320800::ATP-dependent+RNA+helicase+DDX6+%28DOZI%29::INDEL::Pf3D7_03_v3::871248::c.391+41_391+42insAAAAAAAAAAAAAAAAT
PF3D7_0322800::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_03_v3::964260::c.100+61delA
PF3D7_0418000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_04_v3::801420::c.6466-24delT
PF3D7_0532300::Plasmodium+exported+protein+%28PHISTb%29%2C+unknown+function::INDEL::Pf3D7_05_v3::1308566::c.202-46_202-45insAT
PF3D7_0806600::kinesin-like+protein%2C+putative::INDEL::Pf3D7_08_v3::351618::c.939+62_939+71delTTATATTTAT
PF3D7_1351400::60S+ribosomal+protein+L17%2C+putative::INDEL::Pf3D7_13_v3::2052997::c.310-84_310-79delTATATA
PF3D7_1364900::ferrochelatase+%28FC%29::INDEL::Pf3D7_13_v3::2607554::c.238+115_238+116insA
PF3D7_1437900::HSP40%2C+subfamily+A%2C+putative::INDEL::Pf3D7_14_v3::1533692::c.67-46_67-32delTATATATATATATAT
PF3D7_1452500::SNARE+protein%2C+putative+%28BET1%29::INDEL::Pf3D7_14_v3::2152355::c.467+57_467+58insCTTTTCTTTT
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5708604::"Rabinovich RN, Drakeley C, et al. malERA: An updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14(11):e1002456. doi:10.1371/journal.pmed.1002456"
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC4947981::"Norcross NR, Baragaña B, et al. Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials. J Med Chem. 2016;59(13):6101-6120. doi:10.1021/acs.jmedchem.6b00028"
PMC3940870::"McNamara CW, Lee MC, et al. Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria. Nature. 2013;504(7479):248-253. doi:10.1038/nature12782"
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC3147642::"Eastman RT, Dharia NV, et al. Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured Plasmodium falciparum Parasites. Antimicrob Agents Chemother. 2011;55(8):3908-3916. doi:10.1128/AAC.01793-10"
PMC7238349::"Oladeji OS, Oluyori AP, et al. Natural Products as Sources of Antimalarial Drugs: Ethnobotanical and Ethnopharmacological Studies. Scientifica (Cairo). 2020;2020():7076139. doi:10.1155/2020/7076139"
PMC7243790::"Tripathy S, Dassarma B, et al. A review on possible modes of actions of Chloroquine/ Hydroxychloroquine: Repurposing against SAR-COV-2 (COVID 19) pandemic. Int J Antimicrob Agents. 2020;():106028. doi:10.1016/j.ijantimicag.2020.106028"
PMC7227994::"KÜÇÜKTÜRKMEN B, ÖZ UC, et al. In Situ Hydrogel Formulation for Intra-Articular Application of Diclofenac Sodium-Loaded Polymeric Nanoparticles. Turk J Pharm Sci. 2017;14(1):56-64. doi:10.4274/tjps.84803"
PMC7225754::"Rolfes V, Ribeiro LS, et al. Platelets Fuel the Inflammasome Activation of Innate Immune Cells. Cell Rep. 2020;31(6):107615. doi:10.1016/j.celrep.2020.107615"
PMC7207200::"Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ. 2020;192(17):E450-E453. doi:10.1503/cmaj.200528"
PMC7228298::Li Wan Po A. Genomic research delivering on promises: From rejuvenation to vaccines and pharmacogenetics. J Clin Pharm Ther. 2020;():10.1111/jcpt.13131. doi:10.1111/jcpt.13131
PMC7196193::"Malebo HM, D’Alessandro S, et al. In vitro Multistage Malaria Transmission Blocking Activity of Selected Malaria Box Compounds. Drug Des Devel Ther. 2020;14():1593-1607. doi:10.2147/DDDT.S242883"
PMC7216766::"Lubis IN, Wijaya H, et al. Recurrence of Plasmodium malariae and P. falciparum Following Treatment of Uncomplicated Malaria in North Sumatera With Dihydroartemisinin-Piperaquine or Artemether-Lumefantrine. Open Forum Infect Dis. 2020;7(5):ofaa116. doi:10.1093/ofid/ofaa116"
PMC7213813::"Meteke S, Stefopulos M, et al. Delivering infectious disease interventions to women and children in conflict settings: a systematic review. BMJ Glob Health. 2020;5(Suppl 1):e001967. doi:10.1136/bmjgh-2019-001967"
PMC7192829::"Chung C, Silwal P, et al. Vitamin D-Cathelicidin Axis: at the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Netw. 2020;20(2):e12. doi:10.4110/in.2020.20.e12"
PMC7206443::"José RJ, Periselneris JN, et al. Opportunistic bacterial, viral and fungal infections of the lung. Medicine (Abingdon). 2020;():. doi:10.1016/j.mpmed.2020.03.006"
PMC7200085::"Butler-Laporte G, Smyth E, et al. Low-Dose TMP-SMX in the Treatment of Pneumocystis jirovecii Pneumonia: A Systematic Review and Meta-analysis. Open Forum Infect Dis. 2020;7(5):ofaa112. doi:10.1093/ofid/ofaa112"
PMC7203726::"Prohaska S, Henn P, et al. A case report of fatal disseminated fungal sepsis in a patient with ARDS and extracorporeal membrane oxygenation. BMC Anesthesiol. 2020;20():107. doi:10.1186/s12871-020-01031-9"
PMC7200320::"Throckmorton L, Hancher J Management of Travel-Related Infectious Diseases in the Emergency Department. Curr Emerg Hosp Med Rep. 2020;():1-10. doi:10.1007/s40138-020-00213-6"
PMC7200157::"Wambaugh MA, Denham ST, et al. Synergistic and antagonistic drug interactions in the treatment of systemic fungal infections. eLife. 2020;9():e54160. doi:10.7554/eLife.54160"
PMC7180309::"Kifle ZD, Adinew GM, et al. Evaluation of Antimalarial Activity of Methanolic Root Extract of Myrica salicifolia A Rich (Myricaceae) Against Plasmodium berghei–Infected Mice. J Evid Based Integr Med. 2020;25():2515690X20920539. doi:10.1177/2515690X20920539"
PMC7187626::"McCarthy JS, Rückle T, et al. A Single-Dose Combination Study with the Experimental Antimalarials Artefenomel and DSM265 To Determine Safety and Antimalarial Activity against Blood-Stage Plasmodium falciparum in Healthy Volunteers. Antimicrob Agents Chemother. 2019;64(1):e01371-19. doi:10.1128/AAC.01371-19"
PMC7184225::Scully C. Infections and infestations. Scully's Medical Problems in Dentistry. 2014;():526-575. doi:10.1016/B978-0-7020-5401-3.00021-7
PMC6974976::"Shekalaghe S, Mosha D, et al. Optimal timing of primaquine to reduce Plasmodium falciparum gametocyte carriage when co-administered with artemether–lumefantrine. Malar J. 2020;19():34. doi:10.1186/s12936-020-3121-3"
PMC7120727::"Hidalgo J, Arriaga P, et al. Management of Severe Malaria. Evidence-Based Critical Care. 2019;():481-492. doi:10.1007/978-3-030-26710-0_64"
PMID32179526::"Vantaux A, Kim S, et al. Significant Efficacy of a Single Low Dose of Primaquine Compared to Stand-Alone Artemisinin Combination Therapy in Reducing Gametocyte Carriage in Cambodian Patients with Uncomplicated Multidrug-Resistant Plasmodium falciparum Malaria.. Antimicrob Agents Chemother. 2020;64(6):. doi:3"
PMID32036012::"Anjum MU, Naveed AK, et al. Single dose tafenoquine for preventing relapse in people with plasmodium vivax malaria-an updated meta-analysis.. Travel Med Infect Dis. 2020;():101576. doi:3"
PMC7123058::"Hidalgo J, Arriaga P, et al. Management of Severe Malaria. Evidence-Based Critical Care. 2016;():495-508. doi:10.1007/978-3-319-43341-7_57"
PMC7064913::"Commons RJ, McCarthy JS, et al. Tafenoquine for the radical cure and prevention of malaria: the importance of testing for G6PD deficiency. Med J Aust. 2020;212(4):152-153.e1. doi:10.5694/mja2.50474"
PMID32125014::"Ma L, Chen L, et al. Primaquine phosphate induces the apoptosis of ATRA-resistant acute promyelocytic leukemia cells by inhibition of the NF-κB pathway.. J Leukoc Biol. 2020;107(4):685-693. doi:3"
PMID31945049::"Saxena P, Muthu V, et al. Murphy's law in force: sequential adverse events encountered during the treatment of Pneumocystis pneumonia (cotrimoxazole-induced acute peripheral neuropathy and primaquine-induced methemoglobinemia).. N Z Med J. 2020;133(1508):123-126. doi:"
PMC7075415::"Spring MD, Sousa JC, et al. Corrigendum to: Determination of Cytochrome P450 Isoenzyme 2D6 (CYP2D6) Genotypes and Pharmacogenomic Impact on Primaquine Metabolism in an Active-Duty US Military Population. J Infect Dis. 2019;221(7):1204. doi:10.1093/infdis/jiz599"
PMC7071640::"Duparc S, Chalon S, et al. Neurological and psychiatric safety of tafenoquine in Plasmodium vivax relapse prevention: a review. Malar J. 2020;19():111. doi:10.1186/s12936-020-03184-x"
PMID31639093::"Zorc B, Rajić Z, et al. Antiproliferative evaluation of various aminoquinoline derivatives.. Acta Pharm. 2019;69(4):661-672. doi:3"
PMC6942400::"Phommasone K, van Leth F, et al. The use of ultrasensitive quantitative-PCR to assess the impact of primaquine on asymptomatic relapse of Plasmodium vivax infections: a randomized, controlled trial in Lao PDR. Malar J. 2020;19():4. doi:10.1186/s12936-019-3091-5"
PMC6947798::"Chu CS, Carrara VI, et al. Declining Burden of Plasmodium vivax in a Population in Northwestern Thailand from 1995 to 2016 before Comprehensive Primaquine Prescription for Radical Cure. Am J Trop Med Hyg. 2019;102(1):147-150. doi:10.4269/ajtmh.19-0496"
PMID32327223::"Ren S, Zhang Q, et al. Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis.. J Chromatogr A. 2020;():461099. doi:3"
PMC7026887::"Taylor WR, Kheng S, et al. Corrigendum to: Hemolytic Dynamics of Weekly Primaquine Antirelapse Therapy Among Cambodians With Acute Plasmodium vivax Malaria With or Without Glucose-6-Phosphate Dehydrogenase Deficiency. J Infect Dis. 2019;221(5):854. doi:10.1093/infdis/jiz530"
PMID31701249::"Meltzer E, Schwartz E Utility of 8-Aminoquinolines in Malaria Prophylaxis in Travelers.. Curr Infect Dis Rep. 2019;21(11):43. doi:3"
PMID32343220::"Chaves LF, Ramírez Rojas M, et al. Health policy impacts on malaria transmission in Costa Rica.. Parasitology. 2020;():1-9. doi:3"
PMC6898227::"Taylor AR, Watson JA, et al. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat Commun. 2019;10():5595. doi:10.1038/s41467-019-13412-x"
PMC6982862::"Silva AT, Bento CM, et al. Cinnamic Acid Conjugates in the Rescuing and Repurposing of Classical Antimalarial Drugs. Molecules. 2019;25(1):66. doi:10.3390/molecules25010066"
PMID31522991::Markus MB. Killing of Plasmodium vivax by Primaquine and Tafenoquine.. Trends Parasitol. 2019;35(11):857-859. doi:3
PMC7194516::"Schlagenhauf P, Grobusch MP, et al. Repurposing antimalarials and other drugs for COVID-19. Travel Med Infect Dis. 2020;():101658. doi:10.1016/j.tmaid.2020.101658"
PMC7184595::"Wangdi K, Xu Z, et al. A spatio-temporal analysis to identify the drivers of malaria transmission in Bhutan. Sci Rep. 2020;10():7060. doi:10.1038/s41598-020-63896-7"
PMID32394882::"Teklehaimanot A, Teklehaimanot H, et al. Case Report: Primaquine Failure for Radical Cure of <i>Plasmodium vivax</i> Malaria in Gambella, Ethiopia.. Am J Trop Med Hyg. 2020;():. doi:3"
PMID32372747::"Devine A, Howes RE, et al. Cost-Effectiveness Analysis of Sex-Stratified <i>Plasmodium vivax</i> Treatment Strategies Using Available G6PD Diagnostics to Accelerate Access to Radical Cure.. Am J Trop Med Hyg. 2020;():. doi:3"
PMID31701865::"Phru CS, Kibria MG, et al. Case Report: A Case of Primaquine-Induced Hemoglobinuria in Glucose-6-Phosphate Dehydrogenase Deficient Malaria Patient in Southeastern Bangladesh.. Am J Trop Med Hyg. 2020;102(1):156-158. doi:3"
|
MMV019017 |
COCCNCC(O)CN1C2=CC=C(Cl)C=C2C2=C1C=CC(Cl)=C2 |
PF3D7_0103100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_01_v3::136452::p.Asp936His/c.2806G>C
PF3D7_0105700::asparagine-rich+antigen+Pfa35-2::SNP::Pf3D7_01_v3::245013::p.Asn2116Lys/c.6348C>G
PF3D7_0320600::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_03_v3::862959::c.288+106C>T
PF3D7_0732000::stevor::SNP::Pf3D7_07_v3::1386123::p.Ser130Cys/c.388A>T
PF3D7_0909900::helicase+with+Zn-finger+motif%2C+putative::SNP::Pf3D7_09_v3::450256::p.Gln777Glu/c.2329C>G
PF3D7_1300300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::34469::p.Leu3177Leu/c.9531A>G
PF3D7_1300300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::34471::p.Leu3177Leu/c.9529C>T
PF3D7_1300300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::34472::p.Val3176Val/c.9528G>T
PF3D7_1308900::mRNA-decapping+enzyme+2%2C+putative+%28DCP2%29::SNP::Pf3D7_13_v3::411526::p.Gln192His/c.576A>T
PF3D7_0518500::ATP-dependent+RNA+helicase+DDX23%2C+putative+%28DDX23%29::INDEL::Pf3D7_05_v3::765224::p.Gln554_His559del/c.1662_1679delGCAGCACCAGCAGCACCA
PF3D7_0823200::RNA+binding+protein%2C+putative::INDEL::Pf3D7_08_v3::1022682::p.Gly270fs/c.807delA
PF3D7_1333100::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::1359518::p.Gln265_Asn267del/c.793_801delCAAACAAAT
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
MMV1214532 |
CC(C)c1ccc(\C=C2\CCc3c2nc2ccccc2c3C(O)=O)cc1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV1430193 |
CCC(C)C1=CC=C(C=C1)S(=O)(=O)N(CC1=CC=C(C=C1)C(=O)NC1CC1)C1CC1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
TCMDC-135051 |
CCN(CC)CC1=CC=CC(=C1OC)C2=CC3=C(C=CN=C3N2)C4=CC(=C(C=C4)C(=O)O)C(C)C.C(=O)(C(F)(F)F)O |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6805675::"Cowell AN, Winzeler EA Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;11():63. doi:10.1186/s13073-019-0673-3"
PMC6805675::"Cowell AN, Winzeler EA Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;11():63. doi:10.1186/s13073-019-0673-3"
|
KAI407 |
O=C(N(C)C1=CC=C(C=C1)C#N)C2=CN3C(C=N2)=NC=C3C4=CC=C(C=C4)C(F)(F)F |
PF3D7_0509800::phosphatidylinositol+4-kinase::SNP::Pf3D7_05_v3::412495::S743F
PF3D7_0509800::phosphatidylinositol+4-kinase::SNP::Pf3D7_05_v3::412495::S743Y
PF3D7_0509800::phosphatidylinositol+4-kinase::SNP::Pf3D7_05_v3::414813::H1484Y
PF3D7_0509800::phosphatidylinositol+4-kinase::SNP::Pf3D7_05_v3::414813::H1484Y
PF3D7_0509800::phosphatidylinositol+4-kinase::SNP::Pf3D7_05_v3::414813::H1484Y
PF3D7_0525200::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_05_v3::1046780::N440I
PF3D7_0525200::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_05_v3::1046780::N440I
PF3D7_0525200::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_05_v3::1046780::N440I
PF3D7_0420300::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL (visual)::Pf3D7_04_v3::924254::
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC5515376::"Kato N, Comer E, et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature. 2016;538(7625):344-349. doi:10.1038/nature19804"
PMC3940870::"McNamara CW, Lee MC, et al. Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria. Nature. 2013;504(7479):248-253. doi:10.1038/nature12782"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7203758::"Voorberg-van der Wel AM, Zeeman AM, et al. Dual-Luciferase-Based Fast and Sensitive Detection of Malaria Hypnozoites for the Discovery of Antirelapse Compounds. Anal Chem. 2020;92(9):6667-6675. doi:10.1021/acs.analchem.0c00547"
PMC6941962::"Voorberg-van der Wel AM, Zeeman AM, et al. A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation. Commun Biol. 2020;3():7. doi:10.1038/s42003-019-0737-3"
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6591700::"Yahiya S, Rueda-Zubiaurre A, et al. The antimalarial screening landscape—looking beyond the asexual blood stage. Curr Opin Chem Biol. 2019;50():1-9. doi:10.1016/j.cbpa.2019.01.029"
PMC6542585::"Gupta DK, Dembele L, et al. The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. eLife. 2019;8():e43362. doi:10.7554/eLife.43362"
PMC6344078::"Bertschi NL, Voorberg-van der Wel A, et al. Transcriptomic analysis reveals reduced transcriptional activity in the malaria parasite Plasmodium cynomolgi during progression into dormancy. eLife. 2018;7():e41081. doi:10.7554/eLife.41081"
PMC6125526::"Brunschwig C, Lawrence N, et al. UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrob Agents Chemother. 2018;62(9):e00012-18. doi:10.1128/AAC.00012-18"
PMC6013505::"Ashley EA, Phyo AP Drugs in Development for Malaria. Drugs. 2018;78(9):861-879. doi:10.1007/s40265-018-0911-9"
PMC6166223::"Cabrera DG, Horatscheck A, et al. Plasmodial Kinase Inhibitors: License to Cure?. J Med Chem. 2018;61(18):8061-8077. doi:10.1021/acs.jmedchem.8b00329"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC5758109::"Voorberg-van der Wel A, Roma G, et al. A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi. eLife. 2017;6():e29605. doi:10.7554/eLife.29605"
PMC5708601::The malERA Refresh Consultative Panel on Basic Science and Enabling Technologies. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication. PLoS Med. 2017;14(11):e1002451. doi:10.1371/journal.pmed.1002451
PMC5500898::"Pasini EM, Böhme U, et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res. 2017;2():42. doi:10.12688/wellcomeopenres.11864.1"
PMC5458052::"O'Neill PM, Amewu RK, et al. A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat Commun. 2017;8():15159. doi:10.1038/ncomms15159"
PMC5731459::"Paquet T, Le Manach C, et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med. 2017;9(387):eaad9735. doi:10.1126/scitranslmed.aad9735"
PMC5148661::"Phillips MA, White KL, et al. A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor (DSM421) with improved drug-like properties for treatment and prevention of malaria. ACS Infect Dis. 2016;2(12):945-957. doi:10.1021/acsinfecdis.6b00144"
PMC4887158::"Raphemot R, Posfai D, et al. Current therapies and future possibilities for drug development against liver-stage malaria. J Clin Invest. 2016;126(6):2013-2020. doi:10.1172/JCI82981"
PMC5007148::"Hovlid ML, Winzeler EA Phenotypic screens in antimalarial drug discovery. Trends Parasitol. 2016;32(9):697-707. doi:10.1016/j.pt.2016.04.014"
PMC4862498::"Zeeman AM, Lakshminarayana SB, et al. PI4 Kinase Is a Prophylactic but Not Radical Curative Target in Plasmodium vivax-Type Malaria Parasites. Antimicrob Agents Chemother. 2016;60(5):2858-2863. doi:10.1128/AAC.03080-15"
PMC3957848::"Zeeman AM, van Amsterdam SM, et al. KAI407, a Potent Non-8-Aminoquinoline Compound That Kills Plasmodium cynomolgi Early Dormant Liver Stage Parasites In Vitro. Antimicrob Agents Chemother. 2014;58(3):1586-1595. doi:10.1128/AAC.01927-13"
PMC4137381::"Zou B, Nagle A, et al. Lead Optimization of Imidazopyrazines: A New Class of Antimalarial with Activity on Plasmodium Liver Stages. ACS Med Chem Lett. 2014;5(8):947-950. doi:10.1021/ml500244m"
PMC4567697::"Gulati S, Ekland EH, et al. Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. Cell Host Microbe. 2015;18(3):371-381. doi:10.1016/j.chom.2015.08.003"
PMC4807312::Noulin F. Malaria modeling: In vitro stem cells vs in vivo models. World J Stem Cells. 2016;8(3):88-100. doi:10.4252/wjsc.v8.i3.88
PMC4455353::"Campo B, Vandal O, et al. Killing the hypnozoite – drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog Glob Health. 2015;109(3):107-122. doi:10.1179/2047773215Y.0000000013"
PMC4567591::"Ang ML, Murima P, et al. Next-generation antimicrobials: from chemical biology to first-in-class drugs. Arch Pharm Res. 2015;38():1702-1717. doi:10.1007/s12272-015-0645-0"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
|
MMV022478 |
Clc1cccc(c1)-c1cnn2ccc(nc12)C(=O)Nc1ccc(cc1)N1CCNCC1.OC(C(F)(F)F)=O |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC7181032::"Secrieru A, Costa IC, et al. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis—A Short Bridge between Two Distant Illnesses. Molecules. 2020;25(7):1574. doi:10.3390/molecules25071574"
PMC7130106::"Tadele M, Abay SM, et al. Leishmania donovani Growth Inhibitors from Pathogen Box Compounds of Medicine for Malaria Venture. Drug Des Devel Ther. 2020;14():1307-1317. doi:10.2147/DDDT.S244903"
PMC7113605::"Tiash S, Saunders J, et al. An image-based Pathogen Box screen identifies new compounds with anti-Giardia activity and highlights the importance of assay choice in phenotypic drug discovery. Int J Parasitol Drugs Drug Resist. 2020;12():60-67. doi:10.1016/j.ijpddr.2020.03.002"
PMC6805474::"Maccesi M, Aguiar PH, et al. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors. 2019;12():493. doi:10.1186/s13071-019-3747-6"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC6301270::"Veale CG, Hoppe HC Screening of the Pathogen Box reveals new starting points for anti-trypanosomal drug discovery †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8md00319j . Medchemcomm. 2018;9(12):2037-2044. doi:10.1039/c8md00319j"
PMC6095626::"Hennessey KM, Rogiers IC, et al. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS Negl Trop Dis. 2018;12(8):e0006673. doi:10.1371/journal.pntd.0006673"
PMC6066566::"Mi-ichi F, Miyake Y, et al. A Flow Cytometry Method for Dissecting the Cell Differentiation Process of Entamoeba Encystation. Front Cell Infect Microbiol. 2018;8():250. doi:10.3389/fcimb.2018.00250"
PMC5940239::"Lim W, Melse Y, et al. Addressing the most neglected diseases through an open research model: The discovery of fenarimols as novel drug candidates for eumycetoma. PLoS Negl Trop Dis. 2018;12(4):e0006437. doi:10.1371/journal.pntd.0006437"
PMC5786798::"Spalenka J, Escotte-Binet S, et al. Discovery of New Inhibitors of Toxoplasma gondii via the Pathogen Box. Antimicrob Agents Chemother. 2018;62(2):e01640-17. doi:10.1128/AAC.01640-17"
PMC5571359::"Duffy S, Sykes ML, et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother. 2017;61(9):e00379-17. doi:10.1128/AAC.00379-17"
PMID32112721::"Canever MF, Miletti LC Screening and Identification of Pathogen Box® Compounds with anti-Trypanosoma evansi Activity.. Acta Trop. 2020;206():105421. doi:3"
PMID30398059::"Pasche V, Laleu B, et al. Early Antischistosomal Leads Identified from in Vitro and in Vivo Screening of the Medicines for Malaria Venture Pathogen Box.. ACS Infect Dis. 2019;5(1):102-110. doi:3"
|
MMV024038 |
CN(C)S(=O)(=O)C1=CC(=CN=C1N)C1=CC2=C(C=CN=C2C=C1)C1=CC=CC(=C1)S(N)(=O)=O |
::::SNP::Pf3D7_12_v3::2217418::n.2217418T>A
PF3D7_1366300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::2652310::p.Ile130Val/c.388A>G
::::INDEL::Pf3D7_04_v3::916991::n.916992delG
|
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV006962 |
Clc1ccc(cc1)C(=O)Nc2ccc(cc2)c3nc4cc(NC(=O)c5ccc(Cl)cc5)ccc4[nH]3 |
PF3D7_0223200::rifin+%28RIF%29::SNP::Pf3D7_02_v3::908099::E92
PF3D7_0318300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_03_v3::759792::K130*
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV1425891 |
CCNC(=O)C(C)NC(=O)C1=C2C=NN(CC3=C(Cl)C=CC=C3)C2=NC(=C1)C1=CC=CC=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
GNF-Pf-5458 |
CC1(C)C2CCC(C2)C1(C)NC(=S)NN=Cc3ccccn3 |
|
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV667491 |
CN(C)CCCn1cnc2c(c1=N)C(c3ccc4ccccc4c3O2)c5ccc(cc5)OC |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC4808229::"Lucantoni L, Fidock DA, et al. Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes. Antimicrob Agents Chemother. 2016;60(4):2097-2107. doi:10.1128/AAC.01949-15"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
PMC4639769::"Lucantoni L, Silvestrini F, et al. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep. 2015;5():16414. doi:10.1038/srep16414"
PMC4249523::"Ruecker A, Mathias DK, et al. A Male and Female Gametocyte Functional Viability Assay To Identify Biologically Relevant Malaria Transmission-Blocking Drugs. Antimicrob Agents Chemother. 2014;58(12):7292-7302. doi:10.1128/AAC.03666-14"
PMC4144897::"Sanders NG, Sullivan DJ, et al. Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity. PLoS One. 2014;9(8):e105817. doi:10.1371/journal.pone.0105817"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
|
Clofazimine |
Clc1ccc(cc1)Nc1cc2nc3ccccc3n(c2c/c/1=N\C(C)C)c1ccc(cc1)Cl |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7225773::"Martinez SJ, Romano PS, et al. Precision Health for Chagas Disease: Integrating Parasite and Host Factors to Predict Outcome of Infection and Response to Therapy. Front Cell Infect Microbiol. 2020;10():210. doi:10.3389/fcimb.2020.00210"
PMC7216230::"Vyhlídalová B, Krasulová K, et al. Antimigraine Drug Avitriptan Is a Ligand and Agonist of Human Aryl Hydrocarbon Receptor that Induces CYP1A1 in Hepatic and Intestinal Cells. Int J Mol Sci. 2020;21(8):2799. doi:10.3390/ijms21082799"
PMC7227142::"Dowdy DW, Zwerling AA, et al. Measuring Stigma to Assess the Social Justice Implications of Health-Related Policy Decisions: Application to Novel Treatment Regimens for Multidrug-Resistant Tuberculosis. MDM Policy Pract. 2020;5(1):2381468320915239. doi:10.1177/2381468320915239"
PMC7226400::"Balkrishna A, Thakur P, et al. Mechanistic Paradigms of Natural Plant Metabolites as Remedial Candidates for Systemic Lupus Erythromatosus. Cells. 2020;9(4):1049. doi:10.3390/cells9041049"
PMC7223789::"Butler MS, Paterson DL Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo). 2020;73(6):329-364. doi:10.1038/s41429-020-0291-8"
PMC7211950::"Calarasu C, Chichirelo-Konstantynovych KD, et al. ERS International Congress, Madrid, 2019: highlights from the Respiratory Infections Assembly. ERJ Open Res. 2020;6(2):00316-2019. doi:10.1183/23120541.00316-2019"
PMC7210531::"Ejigu DA, Abay SM N-Acetyl Cysteine as an Adjunct in the Treatment of Tuberculosis. Tuberc Res Treat. 2020;2020():5907839. doi:10.1155/2020/5907839"
PMC7201420::"Rosa PS, D’Espindula HR, et al. Emergence and Transmission of Drug-/Multidrug-resistant Mycobacterium leprae in a Former Leprosy Colony in the Brazilian Amazon. Clin Infect Dis. 2019;70(10):2054-2061. doi:10.1093/cid/ciz570"
PMC7198592::"Valle-González ER, Jackman JA, et al. pH-Dependent Antibacterial Activity of Glycolic Acid: Implications for Anti-Acne Formulations. Sci Rep. 2020;10():7491. doi:10.1038/s41598-020-64545-9"
PMC7191866::"Prusa J, Zhu DX, et al. The stringent response and Mycobacterium tuberculosis pathogenesis. Pathog Dis. 2018;76(5):fty054. doi:10.1093/femspd/fty054"
PMC7191267::"Pescarini JM, Williamson E, et al. Effect of a conditional cash transfer programme on leprosy treatment adherence and cure in patients from the nationwide 100 Million Brazilian Cohort: a quasi-experimental study. Lancet Infect Dis. 2020;20(5):618-627. doi:10.1016/S1473-3099(19)30624-3"
PMC7181903::"Florian MC, Rodrigues DA, et al. Epidemiologic and Clinical Progression of Lobomycosis among Kaiabi Indians, Brazil, 1965–2019. Emerg Infect Dis. 2020;26(5):930-936. doi:10.3201/eid2605.190958"
PMC7189596::"Diallo A, Diallo BD, et al. Different profiles of body mass index variation among patients with multidrug-resistant tuberculosis: a retrospective cohort study. BMC Infect Dis. 2020;20():315. doi:10.1186/s12879-020-05028-0"
PMC7157563::"Maslov DA, Shur KV, et al. MmpS5-MmpL5 Transporters Provide Mycobacterium smegmatis Resistance to imidazo[1,2-b][1,2,4,5]tetrazines. Pathogens. 2020;9(3):166. doi:10.3390/pathogens9030166"
PMC7181188::"Phillips RO, Robert J, et al. Rifampicin and clarithromycin (extended release) versus rifampicin and streptomycin for limited Buruli ulcer lesions: a randomised, open-label, non-inferiority phase 3 trial. Lancet. 2020;395(10232):1259-1267. doi:10.1016/S0140-6736(20)30047-7"
PMC7184225::Scully C. Infections and infestations. Scully's Medical Problems in Dentistry. 2014;():526-575. doi:10.1016/B978-0-7020-5401-3.00021-7
PMC7180241::"Alcántara R, Fuentes P, et al. Direct Determination of Pyrazinamide (PZA) Susceptibility by Sputum Microscopic Observation Drug Susceptibility (MODS) Culture at Neutral pH: the MODS-PZA Assay. J Clin Microbiol. 2020;58(5):e01165-19. doi:10.1128/JCM.01165-19"
PMC7179971::"Padmanaban V, Hussein R, et al. Nontuberculous Mycobacterial Infection in Patients with Neurosurgical Hardware: Two Cases and A Review of the Literature. Cureus. 2020;12(3):e7398. doi:10.7759/cureus.7398"
PMC7168257::"Bento CM, Gomes MS, et al. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel). 2020;9(1):18. doi:10.3390/antibiotics9010018"
PMC7171444::"Park IK, Olivier KN Nontuberculous Mycobacteria in Cystic Fibrosis and Non–Cystic Fibrosis Bronchiectasis. Semin Respir Crit Care Med. 2015;36(2):217-224. doi:10.1055/s-0035-1546751"
PMID32310272::"Tuvshintulga B, Vannier E, et al. Clofazimine, a promising drug for the treatment of Babesia microti infection in severely immunocompromised hosts.. J Infect Dis. 2020;():. doi:3"
PMID32437421::"Ahmad S, Bhattacharya D, et al. Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells.. PLoS Pathog. 2020;16(5):e1008356. doi:3"
PMID32339493::George J. Metabolism and Interactions of Antileprosy Drugs.. Biochem Pharmacol. 2020;():113993. doi:3
PMID32361756::"Kadura S, King N, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid.. J Antimicrob Chemother. 2020;():. doi:3"
PMID32148178::"Pinapala A, Koh LJ, et al. Clofazimine in <i>Mycobacterium abscessus</i> peritonitis: A pediatric case report.. Perit Dial Int. 2020;():896860820909702. doi:3"
PMID32272013::"Nagy TA, Crooks AL, et al. Clofazimine Reduces the Survival of <i>Salmonella enterica</i> in Macrophages and Mice.. ACS Infect Dis. 2020;6(5):1238-1249. doi:3"
PMID32444311::"Pecho-Silva S, Navarro-Solsol AC First case report in Latin America: Oral treatment of multidrug-resistant tuberculosis with delamanid and bedaquiline in combination with linezolid, moxifloxacin and clofazimine following a DRESS syndrome in a peruvian patient.. Pulmonology. 2020;():. doi:3"
PMID31843996::"Liu Y, Tan Y, et al. Assessment of Clofazimine and TB47 Combination Activity against Mycobacterium abscessus Using a Bioluminescent Approach.. Antimicrob Agents Chemother. 2020;64(3):. doi:3"
PMID32277809::"Iroh Tam PY, Arnold SLM, et al. Clofazimine for treatment of cryptosporidiosis in HIV-infected adults (CRYPTOFAZ): an experimental medicine, randomized, double-blind, placebo-controlled phase 2a trial.. Clin Infect Dis. 2020;():. doi:3"
PMC6971933::"Lazo-Porras M, Prutsky GJ, et al. World Health Organization (WHO) antibiotic regimen against other regimens for the treatment of leprosy: a systematic review and meta-analysis. BMC Infect Dis. 2020;20():62. doi:10.1186/s12879-019-4665-0"
PMID32071046::"Lanoix JP, Joseph C, et al. Synergistic Activity of Clofazimine and Clarithromycin in an Aerosol Mouse Model of <i>Mycobacterium avium</i> Infection.. Antimicrob Agents Chemother. 2020;64(5):. doi:3"
PMC7054896::"Salim M, Fraser-Miller SJ, et al. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion. Mol Pharm. 2020;17(3):885-899. doi:10.1021/acs.molpharmaceut.9b01149"
PMC7144342::"Agrawal G, Clancy A, et al. Profound remission in Crohn’s disease requiring no further treatment for 3–23 years: a case series. Gut Pathog. 2020;12():16. doi:10.1186/s13099-020-00355-8"
PMC7066793::"Mohan S, Fairley JK A Challenging Case of Domestically Acquired Leprosy in the Southern United States. Open Forum Infect Dis. 2020;7(3):ofaa060. doi:10.1093/ofid/ofaa060"
PMC6809229::"Yong J, Lip Chew K, et al. 1350. Clofazimine as an Oral Companion Drug for Treatment of Mycobacterium abscessus complex Infections. Open Forum Infect Dis. 2019;6(Suppl 2):S488-S489. doi:10.1093/ofid/ofz360.1214"
PMC6810564::"Alameer R, Pfaeffle H, et al. 2260. Clofazimine Safety and Efficacy for Treatment of Multidrug-Resistant Non-Tuberculous Mycobacteria (NTM). Open Forum Infect Dis. 2019;6(Suppl 2):S773-S774. doi:10.1093/ofid/ofz360.1938"
PMC7142403::"Agrawal G, Clancy A, et al. Targeted Combination Antibiotic Therapy Induces Remission in Treatment-Naïve Crohn’s Disease: A Case Series. Microorganisms. 2020;8(3):371. doi:10.3390/microorganisms8030371"
PMID32430417::"Kort F, Fournier Le Ray L, et al. Fully weekly antituberculosis regimen: a proof-of-concept study.. Eur Respir J. 2020;():. doi:3"
PMC7161942::"Locatelli ME, Tosto S, et al. Disseminated Disease by Mycobacterium abscessus and Mycobacterium celatum in an Immunocompromised Host. Am J Case Rep. 2020;21():e921517-1-e921517-5. doi:10.12659/AJCR.921517"
PMID32398197::"Butov D, Lange C, et al. Multidrug-resistant tuberculosis in the Kharkiv Region, Ukraine.. Int J Tuberc Lung Dis. 2020;24(5):485-491. doi:3"
PMID32374827::"Chen X, Li C, et al. A cell-based high-throughput screen identifies drugs that cause bleeding disorders by off-targeting the vitamin K cycle.. Blood. 2020;():. doi:3"
PMID31865940::"Misra N, Padayatchi N, et al. Dose-related adverse events in South African patients prescribed clofazimine for drug-resistant tuberculosis.. S Afr Med J. 2019;110(1):32-37. doi:3"
PMC6906915::"Thangaraju P, Venkatesan S Current treatment guideline by the World Health Organization against leprosy: A positive focus. J Res Med Sci. 2019;24():95. doi:10.4103/jrms.JRMS_23_19"
PMC6822700::"Lockwood DN, Lambert S, et al. Three drugs are unnecessary for treating paucibacillary leprosy—A critique of the WHO guidelines. PLoS Negl Trop Dis. 2019;13(10):e0007671. doi:10.1371/journal.pntd.0007671"
PMC6808959::"Mercurio A, Fredenrich J, et al. 1359. Clinical Experience and Challenges Utilizing Clofazimine in the Treatment of Nontuberculous Mycobacterial Pulmonary Infections. Open Forum Infect Dis. 2019;6(Suppl 2):S492. doi:10.1093/ofid/ofz360.1223"
|
MMV1427995 |
CC(Sc1nnc(-c2ccc(C)cc2)c(n1)-c1ccc(C)cc1)C(=O)NCC=C |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
Altiratinib |
O=C(C1CC1)Nc1nccc(c1)Oc1cc(F)c(cc1F)NC(=O)C1(CC1)C(=O)Nc1ccc(cc1)F |
|
PMC7070486::"Bresso E, Furlan A, et al. Large-Scale Virtual Screening Against the MET Kinase Domain Identifies a New Putative Inhibitor Type. Molecules. 2020;25(4):938. doi:10.3390/molecules25040938"
PMC7025498::"Zhu Y, Liu X, et al. Celastrol Suppresses Glioma Vasculogenic Mimicry Formation and Angiogenesis by Blocking the PI3K/Akt/mTOR Signaling Pathway. Front Pharmacol. 2020;11():25. doi:10.3389/fphar.2020.00025"
PMC7046581::"Naito Y, Mishima S, et al. Japan society of clinical oncology/Japanese society of medical oncology-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors, cooperated by the Japanese society of pediatric hematology/oncology. Int J Clin Oncol. 2020;25(3):403-417. doi:10.1007/s10147-019-01610-y"
PMC6953061::"Vetsika EK, Koukos A, et al. Myeloid-Derived Suppressor Cells: Major Figures that Shape the Immunosuppressive and Angiogenic Network in Cancer. Cells. 2019;8(12):1647. doi:10.3390/cells8121647"
PMC6859818::Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol. 2019;30(Suppl 8):viii23-viii30. doi:10.1093/annonc/mdz282
PMC6826425::"Gravina GL, Mancini A, et al. The Brain Penetrating and Dual TORC1/TORC2 Inhibitor, RES529, Elicits Anti-Glioma Activity and Enhances the Therapeutic Effects of Anti-Angiogenetic Compounds in Preclinical Murine Models. Cancers (Basel). 2019;11(10):1604. doi:10.3390/cancers11101604"
PMC6770574::"Kim H, Chong K, et al. Repurposing Penfluridol in Combination with Temozolomide for the Treatment of Glioblastoma. Cancers (Basel). 2019;11(9):1310. doi:10.3390/cancers11091310"
PMC6704644::"Wang C, Chen Y, et al. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1. J Exp Clin Cancer Res. 2019;38():371. doi:10.1186/s13046-019-1361-2"
PMC6668454::"Cho HR, Kumari N, et al. Increased Antiangiogenic Effect by Blocking CCL2-dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI. Sci Rep. 2019;9():11085. doi:10.1038/s41598-019-47438-4"
PMC6664066::"Ding AS, Routkevitch D, et al. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol. 2019;10():1715. doi:10.3389/fimmu.2019.01715"
PMC6647623::"Han S, Ehrhardt J Jr, et al. A Case of Papillary Thyroid Carcinoma and Kostmann Syndrome: A Genomic Theranostic Approach for Comprehensive Treatment. Am J Case Rep. 2019;20():1027-1034. doi:10.12659/AJCR.916143"
PMC6585013::"Cheng F, Guo D MET in glioma: signaling pathways and targeted therapies. J Exp Clin Cancer Res. 2019;38():270. doi:10.1186/s13046-019-1269-x"
PMC6468667::"Stella GM, Corino A, et al. Brain Metastases from Lung Cancer: Is MET an Actionable Target?. Cancers (Basel). 2019;11(3):271. doi:10.3390/cancers11030271"
PMC6419506::"Cocco E, Scaltriti M, et al. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731-747. doi:10.1038/s41571-018-0113-0"
PMC6329466::"Okamura R, Boichard A, et al. Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precis Oncol. 2018;2018():10.1200/PO.18.00183. doi:10.1200/PO.18.00183"
PMC6147115::Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol. 2018;9():879. doi:10.3389/fphar.2018.00879
PMC6158661::"Kawai H, Tsujigiwa H, et al. Characterization and potential roles of bone marrow-derived stromal cells in cancer development and metastasis. Int J Med Sci. 2018;15(12):1406-1414. doi:10.7150/ijms.24370"
PMC6099740::"Liu X, Kou J, et al. Design, Synthesis and Biological Evaluation of 6,7-Disubstituted-4-phenoxyquinoline Derivatives Bearing Pyridazinone Moiety as c-Met Inhibitors. Molecules. 2018;23(7):1543. doi:10.3390/molecules23071543"
PMC6072607::"Olmez I, Zhang Y, et al. Combined c-Met/Trk inhibition overcomes resistance to CDK4/6 inhibitors in Glioblastoma. Cancer Res. 2018;78(15):4360-4369. doi:10.1158/0008-5472.CAN-17-3124"
PMC5692333::"Olmez I, Purow B CSIG-32. ACTIVATED Trk/Met PATHWAY IS A NOVEL RESISTANCE MECHANISM FOR CDK4/6 INHIBITORS THAT CAN BE TARGETED WITH A SPECIFIC SMALL MOLECULE INHIBITOR. Neuro Oncol. 2017;19(Suppl 6):vi56. doi:10.1093/neuonc/nox168.226"
PMC4998992::"Piao Y, Park SY, et al. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. Neuro Oncol. 2016;18(9):1230-1241. doi:10.1093/neuonc/now030"
PMID26285778::"Smith BD, Kaufman MD, et al. Altiratinib Inhibits Tumor Growth, Invasion, Angiogenesis, and Microenvironment-Mediated Drug Resistance via Balanced Inhibition of MET, TIE2, and VEGFR2.. Mol Cancer Ther. 2015;14(9):2023-34. doi:3"
PMC4217864::"Piao Y, Smith B, et al. AI-25THE NOVEL c-MET INHIBITOR ALTIRATINIB (DCC-2701) INHIBITS TUMOR GROWTH AND INVASION IN A BEVACIZUMAB RESISTANT GLIOBLASTOMA MOUSE MODEL. Neuro Oncol. 2014;16(Suppl 5):v6. doi:10.1093/neuonc/nou238.25"
PMC5426963::"Leung E, Xue A, et al. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene. 2016;36(19):2680-2692. doi:10.1038/onc.2016.421"
PMC6310317::"Raez LE, Rolfo C Neurotrophic tyrosine kinase gene fusions: another opportunity for targeting in lung cancer. Lung Cancer Manag. 2016;5(1):1-4. doi:10.2217/lmt-2016-0003"
PMC5070277::"Amatu A, Sartore-Bianchi A, et al. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open. 2016;1(2):e000023. doi:10.1136/esmoopen-2015-000023"
PMC6407035::"Long NP, Jung KH, et al. An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer. Cancers (Basel). 2019;11(2):155. doi:10.3390/cancers11020155"
PMC4850130::"Desai A, Menon SP, et al. Alterations in genes other than EGFR/ALK/ROS1 in non-small cell lung cancer: trials and treatment options. Cancer Biol Med. 2016;13(1):77-86. doi:10.28092/j.issn.2095-3941.2016.0008"
PMC5603268::"Drilon A, Cappuzzo F, et al. Targeting MET in Lung Cancer: Will Expectations Finally Be MET?. J Thorac Oncol. 2016;12(1):15-26. doi:10.1016/j.jtho.2016.10.014"
|
TCMDC-135395 |
CCS(=O)(=O)Nc1ccc2NC(=O)C(=C(/Nc3ccc(CN4CCCCC4)cc3)c5ccccc5)\c2c1 |
PF3D7_0605300::serine%2Fthreonine+protein+kinase+%28ARK1%29::SNP::Pf3D7_06_v3::223110::p.Val59Leu/c.175G>C
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::33258::p.His2798Pro/c.8393A>C
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::33262::p.Gln2797Glu/c.8389C>G
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::33264::p.Asn2796Ser/c.8387A>G
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::33265::p.Asn2796Asp/c.8386A>G
PF3D7_1324300::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_13_v3::1012127::p.Ser2393Thr/c.7177T>A
PF3D7_0320400::oocyst+capsule+protein+%28Cap380%29::INDEL::Pf3D7_03_v3::851210::p.Asn2098dup/c.6292_6294dupAAT
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_11_v3::33273::p.Leu2793fs/c.8376_8377delAT
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_11_v3::33278::p.Thr2792fs/c.8372_8373insTT
PF3D7_1228300::NIMA+related+kinase+1+%28NEK1%29::SNP::Pf3D7_12_v3::1148538::p.Gly143Asp/c.428G>A
PF3D7_1228300::NIMA+related+kinase+1+%28NEK1%29::SNP::Pf3D7_12_v3::1148847::p.Ala246Gly/c.737C>G
PF3D7_1228300::NIMA+related+kinase+1+%28NEK1%29::SNP::Pf3D7_12_v3::1150671::p.Ser854*/c.2561C>A
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV1449124 |
CC(C)(C)c1cc(NC(=O)COc2ccc3[nH]c4ccccc4c(=O)c3c2)n(n1)-c1ccccc1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV396797 |
n1(nc(C)c2c3ccc(OC)c(OC)c3)c2ncc(C#N)c1N |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5683671::"Chirawurah JD, Ansah F, et al. Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates. Int J Parasitol Drugs Drug Resist. 2017;7(3):399-406. doi:10.1016/j.ijpddr.2017.10.005"
PMC4727890::"Bilsland E, Bean DM, et al. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi. PLoS Negl Trop Dis. 2016;10(1):e0004401. doi:10.1371/journal.pntd.0004401"
PMC4639769::"Lucantoni L, Silvestrini F, et al. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep. 2015;5():16414. doi:10.1038/srep16414"
PMC4144897::"Sanders NG, Sullivan DJ, et al. Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity. PLoS One. 2014;9(8):e105817. doi:10.1371/journal.pone.0105817"
PMC6273446::"Tiwari NK, Reynolds PJ, et al. Preliminary LC-MS Based Screening for Inhibitors of Plasmodium falciparum Thioredoxin Reductase (PfTrxR) among a Set of Antimalarials from the Malaria Box. Molecules. 2016;21(4):424. doi:10.3390/molecules21040424"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
|
pepstatin butyl ester |
CC(C)CC(NC(C(C)C)C(NC(C(C)C)C(NC(CC(C)C)C(O)CC(NC(C)C(NC(CC(C)C)C(O)CC(OCCCC)=O)=O)=O)=O)=O)=O |
PF3D7_0405100::Sec24+subunit+b+%28SEC24b%29::SNP::Pf3D7_04_v3::276762::S21
PF3D7_0405300::sequestrin+%28LISP2%29::SNP::Pf3D7_04_v3::283984::V1438
PF3D7_0531600::18S+ribosomal+RNA::SNP::Pf3D7_05_v3::1290269::V223
PF3D7_0613800::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::SNP::Pf3D7_06_v3::566727::Q197E
PF3D7_0709700::lysophospholipase%2C+putative::SNP::Pf3D7_07_v3::435126::L357P
PF3D7_0709700::lysophospholipase%2C+putative::SNP::Pf3D7_07_v3::435228::L323H
PF3D7_0709700::lysophospholipase%2C+putative::SNP::Pf3D7_07_v3::435781::Q139*
PF3D7_0709700::lysophospholipase%2C+putative::INDEL::Pf3D7_07_v3::435138::-353
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5263872::"Istvan ES, Mallari JP, et al. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat Commun. 2017;8():14240. doi:10.1038/ncomms14240"
PMC7148778:: Subject Index. . 2000;61():895-936. doi:10.1016/S0301-4770(08)60556-4
PMC7122603::Vogel HG. Cardiovascular Activity. Drug Discovery and Evaluation. 2008;():47-391. doi:10.1007/978-3-540-70995-4_2
PMC7101889::"Litvinov DY, Savushkin EV, et al. Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med. 2019;33(6):465-498. doi:10.1007/s40290-019-00308-w"
PMC7063048::"Dijk SN, Protasoni M, et al. Mitochondria as target to inhibit proliferation and induce apoptosis of cancer cells: the effects of doxycycline and gemcitabine. Sci Rep. 2020;10():4363. doi:10.1038/s41598-020-61381-9"
PMC6989105::"Sindhe KM, Wu W, et al. Plasmodium falciparum Resistance to a Lead Benzoxaborole Due to Blocked Compound Activation and Altered Ubiquitination or Sumoylation. mBio. 2020;11(1):e02640-19. doi:10.1128/mBio.02640-19"
PMC7076516::"Fathy Abd-Ellatef GE, Gazzano E, et al. Curcumin-Loaded Solid Lipid Nanoparticles Bypass P-Glycoprotein Mediated Doxorubicin Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics. 2020;12(2):96. doi:10.3390/pharmaceutics12020096"
PMC6885319::"Wei Y, Yang WJ, et al. Cell-Wide Survey of Amide-Bonded Lysine Modifications by Using Deacetylase CobB. Biol Proced Online. 2019;21():23. doi:10.1186/s12575-019-0109-x"
PMC6886300::"Sasaki T, Suzuki Y, et al. IL‐8 induces transdifferentiation of mature hepatocytes toward the cholangiocyte phenotype. FEBS Open Bio. 2019;9(12):2105-2116. doi:10.1002/2211-5463.12750"
PMC6768865::"Agabiti SS, Li J, et al. Regulation of the Notch-ATM-abl axis by geranylgeranyl diphosphate synthase inhibition. Cell Death Dis. 2019;10(10):733. doi:10.1038/s41419-019-1973-7"
PMC6753162::"Brandstaedter C, Delahunty C, et al. The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum. Sci Rep. 2019;9():13542. doi:10.1038/s41598-019-49841-3"
PMC6764213::"Zheng Q, Ayala AX, et al. Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. ACS Cent Sci. 2019;5(9):1602-1613. doi:10.1021/acscentsci.9b00676"
PMC6690956::"Muangnoi C, Ratnatilaka Na Bhuket P, et al. Curcumin diethyl disuccinate, a prodrug of curcumin, enhances anti-proliferative effect of curcumin against HepG2 cells via apoptosis induction. Sci Rep. 2019;9():11718. doi:10.1038/s41598-019-48124-1"
PMC6690696::"Gross AS, Zimmermann A, et al. Acetyl-CoA carboxylase 1–dependent lipogenesis promotes autophagy downstream of AMPK. J Biol Chem. 2019;294(32):12020-12039. doi:10.1074/jbc.RA118.007020"
PMC6556414::"Ku T, Lopresti N, et al. Synthesis of distal and proximal fleximer base analogues and evaluation in the nucleocapsid protein of HIV-1. Bioorg Med Chem. 2019;27(13):2883-2892. doi:10.1016/j.bmc.2019.05.019"
PMC6470456::"Jeong D, Lee J, et al. Antiphotoaging and Antimelanogenic Effects of Penthorum chinense Pursh Ethanol Extract due to Antioxidant- and Autophagy-Inducing Properties. Oxid Med Cell Longev. 2019;2019():9679731. doi:10.1155/2019/9679731"
PMC6450456::"Hocking KM, Evans BC, et al. Nanotechnology Enabled Modulation of Signaling Pathways Affects Physiologic Responses in Intact Vascular Tissue. Tissue Eng Part A. 2019;25(5-6):416-426. doi:10.1089/ten.tea.2018.0169"
PMC6429262::"Yang K, Jin MJ, et al. Design and Synthesis of Novel Anti-Proliferative Emodin Derivatives and Studies on their Cell Cycle Arrest, Apoptosis Pathway and Migration. Molecules. 2019;24(5):884. doi:10.3390/molecules24050884"
PMC6395065::"Kern DM, Oh S, et al. Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs. eLife. 2019;8():e42636. doi:10.7554/eLife.42636"
PMC6399600::"Niemeyer J, Mentrup T, et al. The intramembrane protease SPPL2c promotes male germ cell development by cleaving phospholamban. EMBO Rep. 2019;20(3):e46449. doi:10.15252/embr.201846449"
PMID30100479::"Acevedo Gomez AV, Gomez G, et al. Digestive aspartic proteases from sábalo (Prochilodus lineatus): Characterization and application for collagen extraction.. Food Chem. 2018;269():610-617. doi:3"
PMC6377847::"Larsen EM, Johnson RJ Microbial esterases and ester prodrugs: An unlikely marriage for combatting antibiotic resistance. Drug Dev Res. 2018;80(1):33-47. doi:10.1002/ddr.21468"
PMC5970795::"Olp MD, Zhu N, et al. Metabolically-derived lysine acylations and neighboring modifications tune BET bromodomain binding to histone H4. Biochemistry. 2017;56(41):5485-5495. doi:10.1021/acs.biochem.7b00595"
PMC6100378::"Nelson RA Jr, Schronce T, et al. Synthesis and PI 3-Kinase Inhibition Activity of Some Novel 2,4,6-Trisubstituted 1,3,5-Triazines. Molecules. 2018;23(7):1628. doi:10.3390/molecules23071628"
PMC5347734::"Rouaud F, Boucher JL, et al. Mechanism of melanoma cells selective apoptosis induced by a photoactive NADPH analogue. Oncotarget. 2016;7(50):82804-82819. doi:10.18632/oncotarget.12651"
PMC6489411::"Sharma LK, Tiwari M, et al. Mitophagy activation repairs Leber’s hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival. Hum Mol Genet. 2018;28(3):422-433. doi:10.1093/hmg/ddy354"
PMC4776284::"Price AK, MacConnell AB, et al. hνSABR: Photochemical Dose–Response Bead Screening in Droplets. Anal Chem. 2016;88(5):2904-2911. doi:10.1021/acs.analchem.5b04811"
PMC4166912::"Huang YP, Gao FF, et al. N-n-butyl haloperidol iodide inhibits H2O2-induced Na+/Ca2+-exchanger activation via the Na+/H+ exchanger in rat ventricular myocytes. Drug Des Devel Ther. 2014;8():1257-1267. doi:10.2147/DDDT.S63163"
PMC5595137::"Metelev V, Zhang S, et al. Fluorocarbons Enhance Intracellular Delivery of Short STAT3-sensors and Enable Specific Imaging. Theranostics. 2017;7(13):3354-3368. doi:10.7150/thno.19704"
PMC4987248::"Qiao CJ, Ali HI, et al. Synthesis and Biological Evaluation of Indole-2-carboxamides Bearing Photoactivatable Functionalities as Novel Allosteric Modulators for the Cannabinoid CB1 Receptor. Eur J Med Chem. 2016;121():517-529. doi:10.1016/j.ejmech.2016.05.044"
PMC4254303::"Han KY, Chang JH, et al. Involvement of Lysosomal Degradation in VEGF-C–Induced Down-Regulation of VEGFR-3. FEBS Lett. 2014;588(23):4357-4363. doi:10.1016/j.febslet.2014.09.034"
PMC5761600::"Prasasya RD, Mayo KE Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells. Endocrinology. 2017;159(1):184-198. doi:10.1210/en.2017-00677"
PMC4048150::"Gertsik N, Ballard TE, et al. Development of CBAP-BPyne, a probe for γ-secretase and presenilinase. Medchemcomm. 2013;5(3):338-341. doi:10.1039/C3MD00281K"
PMC4498778::"Dorywalska M, Strop P, et al. Site-Dependent Degradation of a Non-Cleavable Auristatin-Based Linker-Payload in Rodent Plasma and Its Effect on ADC Efficacy. PLoS One. 2015;10(7):e0132282. doi:10.1371/journal.pone.0132282"
PMC6480320::"Kim E, Kang YG, et al. Dehydroabietic Acid Suppresses Inflammatory Response Via Suppression of Src-, Syk-, and TAK1-Mediated Pathways. Int J Mol Sci. 2019;20(7):1593. doi:10.3390/ijms20071593"
PMC5833978::"Rebecca VW, Nicastri MC, et al. A unified approach to targeting the lysosome’s degradative and growth signaling roles. Cancer Discov. 2017;7(11):1266-1283. doi:10.1158/2159-8290.CD-17-0741"
PMC5672041::"Fortini F, Vieceli Dalla Sega F, et al. Estrogen receptor β–dependent Notch1 activation protects vascular endothelium against tumor necrosis factor α (TNFα)-induced apoptosis. J Biol Chem. 2017;292(44):18178-18191. doi:10.1074/jbc.M117.790121"
|
MMV1317269 |
COC1=CC=C2C(CCCC22NC(=O)N(CC3=CC(=O)N4C=C(C)C=CC4=N3)C2=O)=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV030666 |
CC(C)(C)OC(=O)N1CCN(CC1)C1=CC=CC=C1NC(=O)C1=C(OC2=CC=C(F)C=C2)C(=CC=C1)C(F)(F)F |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC5263872::"Istvan ES, Mallari JP, et al. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat Commun. 2017;8():14240. doi:10.1038/ncomms14240"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
DDD01254473 |
CCN1C=CN=C1CN1CCC2=C(N=CN2)C1C1=CC=C(CC)C=N1 |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6143625::"Delves MJ, Miguel-Blanco C, et al. A high throughput screen for next-generation leads targeting malaria parasite transmission. Nat Commun. 2018;9():3805. doi:10.1038/s41467-018-05777-2"
|
Naphthoquine |
CC(C)(C)NCc1cc(c2c(c1O)CCCC2)Nc3ccnc4c3ccc(c4)Cl |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7178572::"Kalange M, Nansunga M, et al. Antimalarial combination therapies increase gastric ulcers through an imbalance of basic antioxidative-oxidative enzymes in male Wistar rats. BMC Res Notes. 2020;13():230. doi:10.1186/s13104-020-05073-7"
PMC7171792::"Kangbai JB, Heumann C, et al. Sociodemographic and clinical determinants of in-facility case fatality rate for 938 adult Ebola patients treated at Sierra Leone Ebola treatment center. BMC Infect Dis. 2020;20():293. doi:10.1186/s12879-020-04994-9"
PMC7110900::"Li J, Duan HJ, et al. Age and Ebola viral load correlate with mortality and survival time in 288 Ebola virus disease patients. Int J Infect Dis. 2015;42():34-39. doi:10.1016/j.ijid.2015.10.021"
PMC7020547::"Xie Y, Liu H, et al. The gender-related variability in the pharmacokinetics and antiplasmodial activity of naphthoquine in rodents. Malar J. 2020;19():71. doi:10.1186/s12936-020-3153-8"
PMC7016953::"Urban N, Schaefer M Direct Activation of TRPC3 Channels by the Antimalarial Agent Artemisinin. Cells. 2020;9(1):202. doi:10.3390/cells9010202"
PMC6941357::"Charman SA, Andreu A, et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J. 2020;19():1. doi:10.1186/s12936-019-3075-5"
PMC6922314::"Naing C, Whittaker MA, et al. Efficacy of antimalarial drugs for treatment of uncomplicated falciparum malaria in Asian region: A network meta-analysis. PLoS One. 2019;14(12):e0225882. doi:10.1371/journal.pone.0225882"
PMC6777759::"Commons RJ, Simpson JA, et al. The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Med. 2019;16(10):e1002928. doi:10.1371/journal.pmed.1002928"
PMC6688248::"He X, Pan M, et al. Multiple relapses of Plasmodium vivax malaria acquired from West Africa and association with poor metabolizer CYP2D6 variant: a case report. BMC Infect Dis. 2019;19():704. doi:10.1186/s12879-019-4357-9"
PMC6503463::"Salim M, Fraser-Miller SJ, et al. Application of Low-Frequency Raman Scattering Spectroscopy to Probe in Situ Drug Solubilization in Milk during Digestion. J Phys Chem Lett. 2019;10(9):2258-2263. doi:10.1021/acs.jpclett.9b00654"
PMC6403410::"van Schalkwyk DA, Blasco B, et al. Plasmodium knowlesi exhibits distinct in vitro drug susceptibility profiles from those of Plasmodium falciparum. Int J Parasitol Drugs Drug Resist. 2019;9():93-99. doi:10.1016/j.ijpddr.2019.02.004"
PMC6473495::"Numonov S, Sharopov F, et al. Assessment of Artemisinin Contents in Selected Artemisia Species from Tajikistan (Central Asia). Medicines (Basel). 2019;6(1):23. doi:10.3390/medicines6010023"
PMC6344993::"Kangbai JB, Heumann C, et al. Epidemiological characteristics, clinical manifestations, and treatment outcome of 139 paediatric Ebola patients treated at a Sierra Leone Ebola treatment center. BMC Infect Dis. 2019;19():81. doi:10.1186/s12879-019-3727-7"
PMC6300482::"Commons RJ, Simpson JA, et al. Risk of Plasmodium vivax parasitaemia after Plasmodium falciparum infection: a systematic review and meta-analysis. Lancet Infect Dis. 2019;19(1):91-101. doi:10.1016/S1473-3099(18)30596-6"
PMC6284417::Moore BR. Liver injury in uncomplicated malaria: an overlooked phenomenon. EBioMedicine. 2018;37():15-16. doi:10.1016/j.ebiom.2018.10.023
PMC6173938::"Tavul L, Hetzel MW, et al. Efficacy of artemether–lumefantrine and dihydroartemisinin–piperaquine for the treatment of uncomplicated malaria in Papua New Guinea. Malar J. 2018;17():350. doi:10.1186/s12936-018-2494-z"
PMC6153844::"Ali AM, Penny MA, et al. Population Pharmacokinetics of the Antimalarial Amodiaquine: a Pooled Analysis To Optimize Dosing. Antimicrob Agents Chemother. 2018;62(10):e02193-17. doi:10.1128/AAC.02193-17"
PMC6156755::"Katneni K, Pham T, et al. Using Human Plasma as an Assay Medium in Caco-2 Studies Improves Mass Balance for Lipophilic Compounds. Pharm Res. 2018;35(11):210. doi:10.1007/s11095-018-2493-3"
PMC6138895::"Ndwigah S, Stergachis A, et al. The quality of anti-malarial medicines in Embu County, Kenya. Malar J. 2018;17():330. doi:10.1186/s12936-018-2482-3"
PMID30668820::"El-Beshbishi SN, El Bardicy S, et al. Biological activity of artemisinin-naphthoquine phosphate on Schistosoma haematobium stages and the vector Bulinus truncatus.. Trans R Soc Trop Med Hyg. 2019;113(6):320-325. doi:3"
PMID32354078::"Córdova-Rivas S, Araujo-Huitrado JG, et al. Differential Proliferation Effect of the Newly Synthesized Valine, Tyrosine and Tryptophan-Naphthoquinones in Immortal and Tumorigenic Cervical Cell Lines.. Molecules. 2020;25(9):. doi:3"
PMC6125548::"Yang H, Wang J, et al. Randomized, Double-Blind, Placebo-Controlled Studies to Assess Safety and Prophylactic Efficacy of Naphthoquine-Azithromycin Combination for Malaria Prophylaxis in Southeast Asia. Antimicrob Agents Chemother. 2018;62(9):e00793-18. doi:10.1128/AAC.00793-18"
PMID29779499::"El-Beshbishi SN, El Bardicy S, et al. Efficacy of artemisinin-naphthoquine phosphate against Schistosoma haematobium adult flukes: dose-effect relationship and tegumental alterations.. J Helminthol. 2019;93(4):513-518. doi:3"
PMID29430676::"Sun Y, Wang S, et al. Metabolite identification of the antimalarial naphthoquine using liquid chromatography-tandem high-resolution mass spectrometry in combination with multiple data-mining tools.. Biomed Chromatogr. 2018;32(6):e4207. doi:3"
PMID31036169::"Zhu S, Yan X, et al. A novel and sensitive fluorescent assay for artemisinin with graphene quantum dots based on inner filter effect.. Talanta. 2019;200():163-168. doi:3"
PMID28513196::"Tang L, Bei Z, et al. Synthesis and in vivo antimalarial activity of novel naphthoquine derivatives with linear/cyclic structured pendants.. Future Med Chem. 2017;9(11):1117-1127. doi:3"
PMID27834287::"Galarneau JR, Meseck EK, et al. Naphthoquine-induced Central Nervous System and Hepatic Vasculocentric Toxicity in the Beagle Dog.. Toxicol Pathol. 2016;44(8):1128-1136. doi:3"
PMC5533548::"Mustafa MS, Rastogi V Artemisinin–naphthoquine combination: A directly observed treatment option in malaria. Med J Armed Forces India. 2016;73(3):287-289. doi:10.1016/j.mjafi.2016.02.001"
PMID27075024::"Moore BR, Laman M, et al. Naphthoquine: An Emerging Candidate for Artemisinin Combination Therapy.. Drugs. 2016;76(7):789-804. doi:3"
PMC5663042::"Moore BR, Davis WA, et al. Cost-effectiveness of artemisinin–naphthoquine versus artemether–lumefantrine for the treatment of uncomplicated malaria in Papua New Guinean children. Malar J. 2017;16():438. doi:10.1186/s12936-017-2081-8"
PMC4505274::"Karl S, Laman M, et al. Gametocyte Clearance Kinetics Determined by Quantitative Magnetic Fractionation in Melanesian Children with Uncomplicated Malaria Treated with Artemisinin Combination Therapy. Antimicrob Agents Chemother. 2015;59(8):4489-4496. doi:10.1128/AAC.00136-15"
PMID29589085::"Hu R, Lei P, et al. Real-time computerised tomography assisted porous tantalum implant in ARCO stage I-II non-traumatic osteonecrosis of the femoral head: minimum five-year follow up.. Int Orthop. 2018;42(7):1535-1544. doi:3"
PMC4453860::"Isba R, Zani B, et al. Artemisinin‐naphthoquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst Rev. 2015;2015(2):CD011547. doi:10.1002/14651858.CD011547"
PMC4280121::"Laman M, Moore BR, et al. Artemisinin-Naphthoquine versus Artemether-Lumefantrine for Uncomplicated Malaria in Papua New Guinean Children: An Open-Label Randomized Trial. PLoS Med. 2014;11(12):e1001773. doi:10.1371/journal.pmed.1001773"
PMID25291045::"El-Beshbishi SN, El Bardicy S, et al. Spotlight on the in vitro effect of artemisinin-naphthoquine phosphate on Schistosoma mansoni and its snail host Biomphalaria alexandrina.. Acta Trop. 2015;141(Pt A):37-45. doi:3"
PMC4596557::"Naing C, Whittaker MA, et al. A systematic review of the efficacy of a single dose artemisinin–naphthoquine in treating uncomplicated malaria. Malar J. 2015;14():392. doi:10.1186/s12936-015-0919-5"
PMC4374335::"Laman M, Benjamin JM, et al. Artemether-lumefantrine versus artemisinin-naphthoquine in Papua New Guinean children with uncomplicated malaria: a six months post-treatment follow-up study. Malar J. 2015;14():121. doi:10.1186/s12936-015-0624-4"
PMID27254098::"Mischlinger J, Agnandji ST, et al. Single dose treatment of malaria - current status and perspectives.. Expert Rev Anti Infect Ther. 2016;14(7):669-78. doi:3"
PMC5358947::"Kemirembe K, Cabrera M, et al. Interactions between tafenoquine and artemisinin-combination therapy partner drug in asexual and sexual stage Plasmodium falciparum. Int J Parasitol Drugs Drug Resist. 2017;7(2):131-137. doi:10.1016/j.ijpddr.2017.03.002"
PMC4335551::"Koleala T, Karl S, et al. Temporal changes in Plasmodium falciparum anti-malarial drug sensitivity in vitro and resistance-associated genetic mutations in isolates from Papua New Guinea. Malar J. 2015;14():37. doi:10.1186/s12936-015-0560-3"
PMC6039318::"Bai Y, Zhang J, et al. Longitudinal surveillance of drug resistance in Plasmodium falciparum isolates from the China-Myanmar border reveals persistent circulation of multidrug resistant parasites. Int J Parasitol Drugs Drug Resist. 2018;8(2):320-328. doi:10.1016/j.ijpddr.2018.05.003"
|
GNF-Pf-3600 |
CC(=O)N(c1ccc(cc1)F)C2=C(C(=O)c3ccccc3C2=O)N(C)C |
|
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC5580409::"Riniker S, Landrum GA, et al. Virtual-screening workflow tutorials and prospective results from the Teach-Discover-Treat competition 2014 against malaria. F1000Res. 2018;6():1136. doi:10.12688/f1000research.11905.1"
|
MMV030084 |
CC(C)(CN)c3nc(c1ccc(Cl)c(O)c1)c(c2ccncc2)[nH]3 |
|
PMID32359426::"Vanaerschot M, Murithi JM, et al. Inhibition of Resistance-Refractory P. Falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chem Biol. 2020 ;S2451-9456(20)30115-X. doi: 10.1016/j.chembiol.2020.04.001."
|
MMV000478 |
CCOC1=CC2=C(C=C1OCC)C(NCC2)C1=CC(Cl)=CC=C1O |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
BRD1095 |
COC1=CC=C(NC(=O)N2CCCCN3[C@H](CN)[C@@H]([C@@H]3C2)C2=CC=C(C=C2)C#CC2=CC=CC=C2)C=C1 |
PF3D7_0109800::phenylalanine--tRNA+ligase%2C+putative::SNP::Pf3D7_01_v3::381644::M316I
PF3D7_0109800::phenylalanine--tRNA+ligase%2C+putative::SNP::Pf3D7_01_v3::382231::G512E
PF3D7_0109800::phenylalanine--tRNA+ligase%2C+putative::SNP::Pf3D7_01_v3::382329::V545I
PF3D7_0109800::phenylalanine--tRNA+ligase%2C+putative::SNP::Pf3D7_01_v3::382344::L550V
PF3D7_0606800::probable+protein%2C+unknown+function::SNP::Pf3D7_06_v3::289226::I17
PF3D7_0916400::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::684723::K388Q
PF3D7_1313100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::563942::N2553I
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5515376::"Kato N, Comer E, et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature. 2016;538(7625):344-349. doi:10.1038/nature19804"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
|
DDD107498 |
FC1=CC=C(N=C(C2=CC=C(CN3CCOCC3)C=C2)C=C4C(NCCN5CCCC5)=O)C4=C1 |
|
PMC6553790::"Stokes BH, Yoo E, et al. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog. 2019;15(6):e1007722. doi:10.1371/journal.ppat.1007722"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC5108032::"Baragaña B, Norcross NR, et al. Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. J Med Chem. 2016;59(21):9672-9685. doi:10.1021/acs.jmedchem.6b00723"
PMC4700930::"Baragaña B, Hallyburton I, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522(7556):315-320. doi:10.1038/nature14451"
PMC7179297::"Rottmann M, Jonat B, et al. Preclinical Antimalarial Combination Study of M5717, a Plasmodium falciparum Elongation Factor 2 Inhibitor, and Pyronaridine, a Hemozoin Formation Inhibitor. Antimicrob Agents Chemother. 2020;64(4):e02181-19. doi:10.1128/AAC.02181-19"
PMC6968685::"Guillon J, Cohen A, et al. Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives. J Enzyme Inhib Med Chem. 2020;35(1):432-459. doi:10.1080/14756366.2019.1706502"
PMC6630517::"Rossier J, Nasiri Sovari S, et al. Antiplasmodial Activity and In Vivo Bio-Distribution of Chloroquine Molecules Released with a 4-(4-Ethynylphenyl)-Triazole Moiety from Organometallo-Cobalamins. Molecules. 2019;24(12):2310. doi:10.3390/molecules24122310"
PMC6591700::"Yahiya S, Rueda-Zubiaurre A, et al. The antimalarial screening landscape—looking beyond the asexual blood stage. Curr Opin Chem Biol. 2019;50():1-9. doi:10.1016/j.cbpa.2019.01.029"
PMC6859814::"Cowell AN, Winzeler EA The genomic architecture of antimalarial drug resistance. Brief Funct Genomics. 2019;18(5):314-328. doi:10.1093/bfgp/elz008"
PMC6366043::"Nyamai DW, Tastan Bishop Ö Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J. 2019;18():34. doi:10.1186/s12936-019-2665-6"
PMC6305384::"Shivapurkar R, Hingamire T, et al. Evaluating antimalarial efficacy by tracking glycolysis in Plasmodium falciparum using NMR spectroscopy. Sci Rep. 2018;8():18076. doi:10.1038/s41598-018-36197-3"
PMC6292128::"Sheridan CM, Garcia VE, et al. The Plasmodium falciparum cytoplasmic translation apparatus: a promising therapeutic target not yet exploited by clinically approved anti-malarials. Malar J. 2018;17():465. doi:10.1186/s12936-018-2616-7"
PMC6211409::"Macintyre F, Ramachandruni H, et al. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar J. 2018;17():402. doi:10.1186/s12936-018-2549-1"
PMC6201119::"Calit J, Dobrescu I, et al. Screening the Pathogen Box for Molecules Active against Plasmodium Sexual Stages Using a New Nanoluciferase-Based Transgenic Line of P. berghei Identifies Transmission-Blocking Compounds. Antimicrob Agents Chemother. 2018;62(11):e01053-18. doi:10.1128/AAC.01053-18"
PMC6099574::"Xu L, Li W, et al. Synthesis, Design, and Structure–Activity Relationship of the Pyrimidone Derivatives as Novel Selective Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Molecules. 2018;23(6):1254. doi:10.3390/molecules23061254"
PMC5958111::"Colmenarejo G, Lozano S, et al. Predicting transmission blocking potential of anti-malarial compounds in the Mosquito Feeding Assay using Plasmodium falciparum Male Gamete Inhibition Assay. Sci Rep. 2018;8():7764. doi:10.1038/s41598-018-26125-w"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC6071755::"Okombo J, Chibale K Recent updates in the discovery and development of novel antimalarial drug candidates. Medchemcomm. 2018;9(3):437-453. doi:10.1039/c7md00637c"
PMC5732164::"Dechering KJ, Duerr HP, et al. Modelling mosquito infection at natural parasite densities identifies drugs targeting EF2, PI4K or ATP4 as key candidates for interrupting malaria transmission. Sci Rep. 2017;7():17680. doi:10.1038/s41598-017-16671-0"
PMC5758109::"Voorberg-van der Wel A, Roma G, et al. A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi. eLife. 2017;6():e29605. doi:10.7554/eLife.29605"
PMC5571370::"Vallières C, Avery SV The Candidate Antimalarial Drug MMV665909 Causes Oxygen-Dependent mRNA Mistranslation and Synergizes with Quinoline-Derived Antimalarials. Antimicrob Agents Chemother. 2017;61(9):e00459-17. doi:10.1128/AAC.00459-17"
PMC5446410::"Sulyok M, Rückle T, et al. DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect Dis. 2017;17(6):636-644. doi:10.1016/S1473-3099(17)30139-1"
PMC4700930::"Baragaña B, Hallyburton I, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522(7556):315-320. doi:10.1038/nature14451"
PMC5095999::"Bhagavathula AS, Elnour AA, et al. Alternatives to currently used antimalarial drugs: in search of a magic bullet. Infect Dis Poverty. 2016;5():103. doi:10.1186/s40249-016-0196-8"
PMID28279559::"Hochegger P, Faist J, et al. New derivatives of quinoline-4-carboxylic acid with antiplasmodial activity.. Bioorg Med Chem. 2017;25(7):2251-2259. doi:3"
PMC5379905::"Gomes AR, Ravenhall M, et al. Genetic diversity of next generation antimalarial targets: A baseline for drug resistance surveillance programmes. Int J Parasitol Drugs Drug Resist. 2017;7(2):174-180. doi:10.1016/j.ijpddr.2017.03.001"
PMC4887403::"Patel PR, Sun W, et al. In vitro evaluation of imidazo[4,5-c]quinolin-2-ones as gametocytocidal antimalarial agents. Bioorg Med Chem Lett. 2016;26(12):2907-2911. doi:10.1016/j.bmcl.2016.04.045"
PMC4887158::"Raphemot R, Posfai D, et al. Current therapies and future possibilities for drug development against liver-stage malaria. J Clin Invest. 2016;126(6):2013-2020. doi:10.1172/JCI82981"
PMC4890880::"Swann J, Corey V, et al. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infect Dis. 2016;2(4):281-293. doi:10.1021/acsinfecdis.5b00143"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4749928::"Langhorne J, Duffy PE Expanding the antimalarial toolkit: Targeting host–parasite interactions. J Exp Med. 2016;213(2):143-153. doi:10.1084/jem.20151677"
|
MMV676380 |
CC(=O)Nc1ccc(NC(=O)c2cc([nH]n2)-c2cc(Cl)ccc2O)cc1 |
|
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6395923::"Machicado C, Soto MP, et al. Screening the Pathogen Box for Identification of New Chemical Agents with Anti-Fasciola hepatica Activity. Antimicrob Agents Chemother. 2019;63(3):e02373-18. doi:10.1128/AAC.02373-18"
PMC5826141::"Tong JX, Chandramohanadas R, et al. High-Content Screening of the Medicines for Malaria Venture Pathogen Box for Plasmodium falciparum Digestive Vacuole-Disrupting Molecules Reveals Valuable Starting Points for Drug Discovery. Antimicrob Agents Chemother. 2018;62(3):e02031-17. doi:10.1128/AAC.02031-17"
|
GNF-pf-5660 |
CCOC(=O)C1=C(C)NC2=C(C1C3=CC=CC=C3Cl)C(=O)CC(C2)C4=CC=C(OC)C(OC)=C4 |
PF3D7_0506500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_05_v3::269130::NA
PF3D7_0506700::GTPase-activating+protein%2C+putative::SNP::Pf3D7_05_v3::282919::K678N
PF3D7_0506700::GTPase-activating+protein%2C+putative::SNP::Pf3D7_05_v3::282919::K678N
PF3D7_1210700::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::477345::E342D
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1176638::V850A
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1176638::V850A
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4703370::"Berenstein AJ, Magariños MP, et al. A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases. PLoS Negl Trop Dis. 2016;10(1):e0004300. doi:10.1371/journal.pntd.0004300"
|
MMV084978 |
Clc1ccc(cc1)C(=O)NNC(=O)c2csnn2 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
Pentamidine isothionate |
NC(=N)c1ccc(cc1)OCCCCCOc1ccc(cc1)C(=N)N |
|
PMC7162159:: Posters. Clin Microbiol Infect. 2007;13():S109-S608. doi:10.1111/j.1469-0691.2007.01733.x
PMC7083374::"de Lima JP, Pinheiro ML, et al. In vivo antileishmanial activity of Annona mucosa extracts. Rev Soc Bras Med Trop. 2020;53():e20190139. doi:10.1590/0037-8682-0139-2019"
PMC7157241::"Buckner FS, Buchynskyy A, et al. Phenotypic Drug Discovery for Human African Trypanosomiasis: A Powerful Approach. Trop Med Infect Dis. 2020;5(1):23. doi:10.3390/tropicalmed5010023"
PMC7135779::Light RB. Plagues in the ICU: A Brief History of Community-Acquired Epidemic and Endemic Transmissible Infections Leading to Intensive Care Admission. Crit Care Clin. 2009;25(1):67-81. doi:10.1016/j.ccc.2008.11.002
PMC5953371::"do Lago AS, Nascimento M, et al. The Elderly Respond to Antimony Therapy for Cutaneous Leishmaniasis Similarly to Young Patients but Have Severe Adverse Reactions. Am J Trop Med Hyg. 2018;98(5):1317-1324. doi:10.4269/ajtmh.17-0736"
PMC6273649::"Duque-Benítez SM, Ríos-Vásquez LA, et al. Synthesis of Novel Quaternary Ammonium Salts and Their in Vitro Antileishmanial Activity and U-937 Cell Cytotoxicity. Molecules. 2016;21(4):381. doi:10.3390/molecules21040381"
PMC4689067::"Gadelha EP, Talhari S, et al. Efficacy and safety of a single dose pentamidine (7mg/kg) for patients with cutaneous leishmaniasis caused by L. guyanensis: a pilot study . An Bras Dermatol. 2015;90(6):807-813. doi:10.1590/abd1806-4841.20153956"
PMC4619429::"Costa SS, Viveiros M, et al. Impact of efflux in the development of multidrug resistance phenotypes in Staphylococcus aureus. BMC Microbiol. 2015;15():232. doi:10.1186/s12866-015-0572-8"
PMC4592236::"Firdessa R, Good L, et al. Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB). PLoS Negl Trop Dis. 2015;9(10):e0004041. doi:10.1371/journal.pntd.0004041"
PMC4599196::"Sbeghen MR, Voltarelli EM, et al. Topical and Intradermal Efficacy of Photodynamic Therapy with Methylene Blue and Light-Emitting Diode in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis . J Lasers Med Sci. 2015;6(3):106-111. doi:10.15171/jlms.2015.03"
PMC3962778::"Tatipaka HB, Gillespie JR, et al. Substituted 2-Phenyl-Imidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis. J Med Chem. 2014;57(3):828-835. doi:10.1021/jm401178t"
PMC3710675::"Masmoudi A, Hariz W, et al. Old World cutaneous leishmaniasis: diagnosis and treatment. J Dermatol Case Rep. 2013;7(2):31-41. doi:10.3315/jdcr.2013.1135"
PMID9747313::"Amato V, Amato J, et al. [Treatment of mucocutaneous leishmaniasis with pentamidine isothionate].. Ann Dermatol Venereol. 1998;125(8):492-5. doi:"
PMID12908038::"de Paula CD, Sampaio JH, et al. [A comparative study between the efficacy of pentamidine isothionate given in three doses for one week and N-methil-glucamine in a dose of 20mgSbV/day for 20 days to treat cutaneous leishmaniasis].. Rev Soc Bras Med Trop. 2003;36(3):365-71. doi:"
PMID4355009::"Waldman RH, Pearce DE, et al. Pentamidine isothionate levels in lungs, livers, and kidneys of rats after aerosol or intramuscular administration.. Am Rev Respir Dis. 1973;108(4):1004-6. doi:3"
PMC5196124::Hazarika AN. Treatment of Kala-Azar with Pentamidine Isothionate. A Study of 55 Cases. Ind Med Gaz. 1949;84(4):140-145. doi:
PMID14831171::"LEE TM, LING CC Preliminary observations on the treatment of Chinese kala-azar with pentamidine isothionate.. Chin Med J. 1951;69(3-4):160-70. doi:"
PMC5190497::"Ghosal SM, Sinha YK Trial of Pentamidine Isothionate in Kala-Azar Cases in the Patna Medical College Hospital (Preliminary Report). Ind Med Gaz. 1948;83(1):11-14. doi:"
PMID16778316::"Bhattacharya SK, Sur D, et al. Childhood visceral leishmaniasis.. Indian J Med Res. 2006;123(3):353-6. doi:"
PMID15700843::"de Souza AO, Hemerly FP, et al. 2-propen-1-amine derivatives and their synthetic intermediates: activity against pathogenic trypanosomatids.. J Chemother. 2004;16(6):530-3. doi:3"
PMID15664483::"González P, Marín C, et al. In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum.. Int J Antimicrob Agents. 2005;25(2):136-41. doi:3"
PMID15072770::"Schuster FL, Visvesvara GS Opportunistic amoebae: challenges in prophylaxis and treatment.. Drug Resist Updat. 2004;7(1):41-51. doi:3"
PMID9122147::"Casassus P, Padrazzi B, et al. [Prevention of opportunistic infections in HIV seropositive patients. Prevention of parasitic infections].. Presse Med. 1997;26(7):334-9. doi:"
PMID9264733::"Raccurt CP, Pradinaud R, et al. [Leishmania (Viannia) braziliensis Vianna, 1911 in French Guiana. Clinical, therapeutic and epidemiological considerations in the ninth human diagnosed case].. Bull Soc Pathol Exot. 1996;89(5):341-4. doi:"
PMC6078324::"López L, Vélez I, et al. A phase II study to evaluate the safety and efficacy of topical 3% amphotericin B cream (Anfoleish) for the treatment of uncomplicated cutaneous leishmaniasis in Colombia. PLoS Negl Trop Dis. 2018;12(7):e0006653. doi:10.1371/journal.pntd.0006653"
PMC4689457::"Freitas EO, Nico D, et al. Immucillins ImmA and ImmH Are Effective and Non-toxic in the Treatment of Experimental Visceral Leishmaniasis. PLoS Negl Trop Dis. 2015;9(12):e0004297. doi:10.1371/journal.pntd.0004297"
PMC4560413::"Worku N, Stich A, et al. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity. PLoS One. 2015;10(9):e0137353. doi:10.1371/journal.pone.0137353"
PMC4293334::"Sundar S, Chakravarty J An Update on Pharmacotherapy for Leishmaniasis. Expert Opin Pharmacother. 2014;16(2):237-252. doi:10.1517/14656566.2015.973850"
PMC3794916::"Graf FE, Ludin P, et al. Aquaporin 2 Mutations in Trypanosoma brucei gambiense Field Isolates Correlate with Decreased Susceptibility to Pentamidine and Melarsoprol. PLoS Negl Trop Dis. 2013;7(10):e2475. doi:10.1371/journal.pntd.0002475"
PMC4777553::"van Griensven J, Gadisa E, et al. Treatment of Cutaneous Leishmaniasis Caused by Leishmania aethiopica: A Systematic Review. PLoS Negl Trop Dis. 2016;10(3):e0004495. doi:10.1371/journal.pntd.0004495"
PMC4356813::"Rice CA, Colon BL, et al. Bis-Benzimidazole Hits against Naegleria fowleri Discovered with New High-Throughput Screens. Antimicrob Agents Chemother. 2015;59(4):2037-2044. doi:10.1128/AAC.05122-14"
PMC4790300::"Costa SS, Junqueira E, et al. Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus. Antibiotics (Basel). 2013;2(1):83-99. doi:10.3390/antibiotics2010083"
|
MMV909980 |
COc1cc2c(cc1OCc1ccccc1)N(CC21CCN(C)CC1)C(=O)c1cc2ccccc2[nH]1 |
|
|
MMV1432165 |
O=C(COc1ccc2[nH]c3ccccc3c(=O)c2c1)N1C(COc2ccccc12)c1ccccc1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV022224 |
[O-]C(=O)C(F)(F)F.CN(C)CC1=CC=C(C=C1)C1=CC2=C(N1)N=CC=C2C1=CC=C(CN(C)C)C=C1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
Sapanisertib |
Nc1oc2c(n1)cc(cc2)c1nn(c2c1c(N)ncn2)C(C)C |
|
PMC7221892::"Phan TN, Baek KH, et al. In Vitro and in Vivo Activity of mTOR Kinase and PI3K Inhibitors Against Leishmania donovani and Trypanosoma brucei. Molecules. 2020;25(8):1980. doi:10.3390/molecules25081980"
PMC7185126::"Al-Azab M, Wang B, et al. Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY). 2020;12(7):5693-5715. doi:10.18632/aging.102958"
PMC7104191::"Uhlenhopp DJ, West J, et al. Rapidly enlarging malignant abdominal PEComa with hepatic metastasis: a promising initial response to sirolimus following surgical excision of primary tumor. Oxf Med Case Reports. 2020;2020(3):omaa013. doi:10.1093/omcr/omaa013"
PMC7216265::"Ortiz-Pedraza Y, Muñoz-Bello JO, et al. Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer. Int J Mol Sci. 2020;21(8):2872. doi:10.3390/ijms21082872"
PMC7174681::"Occhipinti G, Romagnoli E, et al. Sequential or Concomitant Inhibition of Cyclin-Dependent Kinase 4/6 Before mTOR Pathway in Hormone-Positive HER2 Negative Breast Cancer: Biological Insights and Clinical Implications. Front Genet. 2020;11():349. doi:10.3389/fgene.2020.00349"
PMC7059203::"Fattizzo B, Rosa J, et al. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol. 2020;10():273. doi:10.3389/fonc.2020.00273"
PMC6878608::"Liao BC, Griesing S, et al. Second-line treatment of EGFR T790M-negative non-small cell lung cancer patients. Ther Adv Med Oncol. 2019;11():1758835919890286. doi:10.1177/1758835919890286"
PMC6849155::"Kangussu-Marcolino MM, Ehrenkaufer GM, et al. Identification of plicamycin, TG02, panobinostat, lestaurtinib, and GDC-0084 as promising compounds for the treatment of central nervous system infections caused by the free-living amebae Naegleria, Acanthamoeba and Balamuthia. Int J Parasitol Drugs Drug Resist. 2019;11():80-94. doi:10.1016/j.ijpddr.2019.10.003"
PMC6785914::"Chan JJ, Tan TJ, et al. Novel therapeutic avenues in triple-negative breast cancer: PI3K/AKT inhibition, androgen receptor blockade, and beyond. Ther Adv Med Oncol. 2019;11():1758835919880429. doi:10.1177/1758835919880429"
PMC6746935::"Yang XG, Zhu LC, et al. Current Advance of Therapeutic Agents in Clinical Trials Potentially Targeting Tumor Plasticity. Front Oncol. 2019;9():887. doi:10.3389/fonc.2019.00887"
PMC6676723::"Li J, Liu W, et al. Rapamycin enhanced the antitumor effects of doxorubicin in myelogenous leukemia K562 cells by downregulating the mTOR/p70S6K pathway. Oncol Lett. 2019;18(3):2694-2703. doi:10.3892/ol.2019.10589"
PMC6360255::"Addie RD, de Jong Y, et al. Exploration of the chondrosarcoma metabolome; the mTOR pathway as an important pro-survival pathway. J Bone Oncol. 2019;15():100222. doi:10.1016/j.jbo.2019.100222"
PMC6279485::"Chamberlain CE, German MS, et al. A Patient-derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-Resistant Tumors. Mol Cancer Ther. 2018;17(12):2702-2709. doi:10.1158/1535-7163.MCT-17-1204"
PMID31841591::"Arnold A, Yuan M, et al. Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity.. Neuro Oncol. 2020;22(4):563-574. doi:3"
PMID31308077::"Mühlenberg T, Ketzer J, et al. KIT-Dependent and KIT-Independent Genomic Heterogeneity of Resistance in Gastrointestinal Stromal Tumors - TORC1/2 Inhibition as Salvage Strategy.. Mol Cancer Ther. 2019;18(11):1985-1996. doi:3"
PMID31749911::"Ouvry G, Clary L, et al. Impact of Minor Structural Modifications on Properties of a Series of mTOR Inhibitors.. ACS Med Chem Lett. 2019;10(11):1561-1567. doi:3"
PMC6477344::"Luo X, Fan QW, et al. THER-08. RAPLINK-1 COOPERATES WITH INHIBITORS OF Bcl-2/Bcl-xl TO INDUCE APOPTOSIS IN GLIOBLASTOMA. Neuro Oncol. 2019;21(Suppl 2):ii115. doi:10.1093/neuonc/noz036.215"
PMID31806641::"Wong RA, Luo X, et al. Cooperative Blockade of PKCα and JAK2 Drives Apoptosis in Glioblastoma.. Cancer Res. 2020;80(4):709-718. doi:3"
PMC6559930::"Patel A, Cohen S, et al. Patient-derived xenograft models to optimize kidney cancer therapies. Transl Androl Urol. 2019;8(Suppl 2):S156-S165. doi:10.21037/tau.2018.11.04"
PMC5812400::"Moore KN, Bauer TM, et al. Phase I study of the investigational oral mTORC1/2 inhibitor sapanisertib (TAK-228): tolerability and food effects of a milled formulation in patients with advanced solid tumours. ESMO Open. 2018;3(2):e000291. doi:10.1136/esmoopen-2017-000291"
PMC7245191::"Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020;():1-19. doi:10.1007/s10930-020-09901-4"
PMC7226351::"Rajaratnam V, Islam MM, et al. Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers (Basel). 2020;12(4):937. doi:10.3390/cancers12040937"
PMC7150495::"Zhou C, Liu C, et al. SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway. Theranostics. 2020;10(10):4627-4643. doi:10.7150/thno.42869"
PMC6961404::"Malone ER, Oliva M, et al. Molecular profiling for precision cancer therapies. Genome Med. 2020;12():8. doi:10.1186/s13073-019-0703-1"
PMC6923785::"Brandão M, Caparica R, et al. Biomarkers of response and resistance to PI3K inhibitors in estrogen receptor-positive breast cancer patients and combination therapies involving PI3K inhibitors. Ann Oncol. 2019;30(Suppl 10):x27-x42. doi:10.1093/annonc/mdz280"
PMC6923780::"de la Cruz López KG, Toledo Guzmán ME, et al. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Front Oncol. 2019;9():1373. doi:10.3389/fonc.2019.01373"
PMC6952948::"Magaway C, Kim E, et al. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells. 2019;8(12):1584. doi:10.3390/cells8121584"
PMC6888641::"Hillmann P, Fabbro D PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. Int J Mol Sci. 2019;20(22):5792. doi:10.3390/ijms20225792"
PMC7104191::"Uhlenhopp DJ, West J, et al. Rapidly enlarging malignant abdominal PEComa with hepatic metastasis: a promising initial response to sirolimus following surgical excision of primary tumor. Oxf Med Case Reports. 2020;2020(3):omaa013. doi:10.1093/omcr/omaa013"
PMC6345540::"Lewis CS, Thomas HE, et al. mTOR kinase inhibition reduces tissue factor expression and growth of pancreatic neuroendocrine tumors. J Thromb Haemost. 2018;17(1):169-182. doi:10.1111/jth.14342"
PMC6348338::"Guo N, Azadniv M, et al. Effects of Neddylation and mTOR Inhibition in Acute Myelogenous Leukemia. Transl Oncol. 2019;12(4):602-613. doi:10.1016/j.tranon.2019.01.001"
PMID30387396::"Panchal II, Badeliya SN, et al. In silico Analysis and Molecular Docking Studies of Novel 4-Amino-3- (Isoquinolin-4-yl)-1H-Pyrazolo[3,4-d]Pyrimidine Derivatives as Dual PI3-K/mTOR Inhibitors.. Curr Drug Discov Technol. 2019;16(3):297-306. doi:3"
PMC5718976::"Malone CF, Emerson C, et al. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discov. 2017;7(12):1450-1463. doi:10.1158/2159-8290.CD-17-0177"
PMC6314865::"Sobhani N, Generali D, et al. Current status of PI3K-mTOR inhibition in hormone-receptor positive, HER2-negative breast cancer. World J Clin Oncol. 2018;9(8):172-179. doi:10.5306/wjco.v9.i8.172"
PMC6961122::"Valero T, Baillache DJ, et al. Pyrazolopyrimide library screening in glioma cells discovers highly potent antiproliferative leads that target the PI3K/mTOR pathway. Bioorg Med Chem. 2020;28(1):115215. doi:10.1016/j.bmc.2019.115215"
|
MMV675939 |
FC(F)(F)C1=CC=C(NC2=CC(NC(C3=CC(C(F)(F)F)=CC=C3)=N4)=C4C=N2)N=C1 |
PF3D7_0725300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_07_v3::1073010::p.Ser525Ile/c.1574G>T
::::SNP::Pf3D7_08_v3::1449892::
::::SNP::Pf3D7_08_v3::1449894::
PF3D7_0207000::merozoite+surface+protein+4+%28MSP4%29::INDEL::Pf3D7_02_v3::277734::p.Asp189_Asp193del/c.564_578delCGATGACGAAGATGA
PF3D7_1113000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_11_v3::508580::p.Asn5204fs/c.15612delC
::::INDEL::Pf3D7_14_v3::1933616::n.1933617_1933622delTAAAAA
::::INDEL::Pf3D7_14_v3::2814709::n.2814710_2814719delATATATATAT
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
|
MMV007181 |
CC1=C2C=CC(O)=CC2=NC(NC2=CC=C(OCC3=CC=CC=C3)C=C2)=C1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5770543::"Subramanian G, Belekar MA, et al. Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules. mSphere. 2018;3(1):e00534-17. doi:10.1128/mSphere.00534-17"
|
MMV006172 |
CN1CCN(CC1)c1ccc(Nc2c3ccccc3nc3ccccc23)cc1 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6938011::"de Souza GE, Bueno RV, et al. Antiplasmodial profile of selected compounds from Malaria Box: in vitro evaluation, speed of action and drug combination studies. Malar J. 2019;18():447. doi:10.1186/s12936-019-3069-3"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC5075070::"Creek DJ, Chua HH, et al. Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrob Agents Chemother. 2016;60(11):6650-6663. doi:10.1128/AAC.01226-16"
PMC4808229::"Lucantoni L, Fidock DA, et al. Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes. Antimicrob Agents Chemother. 2016;60(4):2097-2107. doi:10.1128/AAC.01949-15"
PMC4639769::"Lucantoni L, Silvestrini F, et al. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep. 2015;5():16414. doi:10.1038/srep16414"
PMC4636458::"Çelik H, Hong SH, et al. Identification of novel ezrin inhibitors targeting metastatic osteosarcoma by screening open access malaria box. Mol Cancer Ther. 2015;14(11):2497-2507. doi:10.1158/1535-7163.MCT-15-0511"
PMC4187973::"Boyom FF, Fokou PV, et al. Repurposing the Open Access Malaria Box To Discover Potent Inhibitors of Toxoplasma gondii and Entamoeba histolytica. Antimicrob Agents Chemother. 2014;58(10):5848-5854. doi:10.1128/AAC.02541-14"
PMC4144897::"Sanders NG, Sullivan DJ, et al. Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity. PLoS One. 2014;9(8):e105817. doi:10.1371/journal.pone.0105817"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
|
MMV008149 |
CC1=C(C)C2=CC(=CC=C2N1CC1=CC=C(F)C=C1)C(=O)NCC1=CC=CO1 |
PF3D7_1014800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_10_v3::599301::K167
mal_mito_3::apocytochrome+b+%28cyb%29::SNP::M76611::3868::Y126C
mal_mito_3::apocytochrome+b+%28cyb%29::SNP::M76611::3882::G131S
mal_mito_3::apocytochrome+b+%28cyb%29::SNP::M76611::4341::V284L
PF3D7_0309000::dual+specificity+phosphatase+%28YVH1%29::INDEL::Pf3D7_03_v3::385842::
PF3D7_1023900::chromodomain-helicase-DNA-binding+protein+1+homolog%2C+putative+%28CHD1%29::INDEL::Pf3D7_10_v3::998223::-3080QVQE
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC4751939::"Khraiwesh M, Leed S, et al. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box against Intracellular Leishmania major Amastigotes. Am J Trop Med Hyg. 2016;94(2):340-347. doi:10.4269/ajtmh.15-0448"
::
::
::
|
Silmitasertib |
Clc1cccc(c1)Nc1nc2cc(ccc2c2c1ccnc2)C(=O)O |
|
|
MMV1431916 |
Cc1ccccc1NC(=O)c1cc2ccccc2c(CN2CCC3(CC2)OCCO3)c1O |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV011903 |
Cc1ccc(NC(=O)c2nc[nH]c2C(=O)Nc2nc3ccccc3[nH]2)c(C)c1 |
|
PMC6216040::"Rufener R, Dick L, et al. Repurposing of an old drug: In vitro and in vivo efficacies of buparvaquone against Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist. 2018;8(3):440-450. doi:10.1016/j.ijpddr.2018.10.011"
PMC6057649::"Berry SL, Hameed H, et al. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl Trop Dis. 2018;12(7):e0006639. doi:10.1371/journal.pntd.0006639"
PMC6925586::" Abstract Proceedings of the 7th International Congress of the Molecular Biology Association of Turkey: İstanbul, Turkey. 27-29 September 2019.. Turk J Biol. 2019;43(5 Suppl):1-132. doi:"
|
MMV1468363 |
FC1=CC=CC=C1C1SC2=CC=CC=C2NC2=C1C(=O)C1=CC=CC=C21 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV1030932 |
CC(=O)NCC1=CC=C(C=C1)C(=O)NC1=C(O)C=CC=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
DDD01298810 |
CC1=CN(CC2CCCN2CC2=NC(C)=C3C=CC=CC3=N2)N=C1 |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV1371622 |
COC1=CC=C(NC2=NC(=O)\C(S2)=C\C2=C(C)N(C(C)=C2)C2=CC=CC(Cl)=C2Cl)C=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
GNF-Pf-5611 |
Cc1ccc2ccc3ccc(nc3c2n1)C |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV665943 |
NC1=CC=C(C=C1)C1=NC2=CC(CC3=CC=C4NC(=NC4=C3)C3=CC=C(N)C=C3)=CC=C2N1 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6360151::"Miró-Canturri A, Ayerbe-Algaba R, et al. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front Microbiol. 2019;10():41. doi:10.3389/fmicb.2019.00041"
PMC5853493::"Jung EH, Meyers DJ, et al. Novel Antifungal Compounds Discovered in Medicines for Malaria Venture’s Malaria Box. mSphere. 2018;3(2):e00537-17. doi:10.1128/mSphere.00537-17"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
|
MMV006833 |
Cc1cc(Cl)c(cc1OCC(=O)NC1CCCCC1)S(=O)(=O)N1CCCC1 |
|
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
|
MMV019189 |
Cc1ccc2c(NC(=O)C23NN=C(S3)c4ccccc4)c1C |
|
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC6301270::"Veale CG, Hoppe HC Screening of the Pathogen Box reveals new starting points for anti-trypanosomal drug discovery †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8md00319j . Medchemcomm. 2018;9(12):2037-2044. doi:10.1039/c8md00319j"
PMC6095626::"Hennessey KM, Rogiers IC, et al. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS Negl Trop Dis. 2018;12(8):e0006673. doi:10.1371/journal.pntd.0006673"
PMC5571359::"Duffy S, Sykes ML, et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother. 2017;61(9):e00379-17. doi:10.1128/AAC.00379-17"
|
MMV396736 |
c1cc2c(cc1Cl)c3cc(ccc3n2CC(CNCC4CCCO4)O)Cl |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
BMS-906024 |
NC(=O)[C@@H]([C@H](C(=O)N[C@H]1N=C(c2ccccc2)c2c(N(C1=O)C)cccc2)CCC(F)(F)F)CCC(F)(F)F |
|
|
cladosporin |
C[C@@H]1O[C@@H](C[C@H](O2)CC3=CC(O)=CC(O)=C3C2=O)CCC1 |
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::29827::p.Gly106Gly/c.318T>C
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::29840::p.Lys111Glu/c.331A>G
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::29865::p.Ile119Asn/c.356T>A
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::29875::p.Lys122Lys/c.366G>A
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::29879::p.Val124Phe/c.370G>T
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::29880::p.Val124Gly/c.371T>G
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::37106::p.Ala2158Ser/c.6472G>T
PF3D7_0100400::rifin+%28RIF%29::SNP::Pf3D7_01_v3::51266::p.Gln250Arg/c.749A>G
PF3D7_0100400::rifin+%28RIF%29::SNP::Pf3D7_01_v3::51267::p.Gln250His/c.750G>C
PF3D7_0100900::rifin+%28RIF%29::SNP::Pf3D7_01_v3::62930::p.Leu104Ile/c.310T>A
PF3D7_0100900::rifin+%28RIF%29::SNP::Pf3D7_01_v3::62934::p.Asp102Asp/c.306C>T
PF3D7_0100900::rifin+%28RIF%29::SNP::Pf3D7_01_v3::62964::p.Glu92Asp/c.276A>T
PF3D7_0100900::rifin+%28RIF%29::SNP::Pf3D7_01_v3::62967::p.Cys91Cys/c.273C>T
PF3D7_0100900::rifin+%28RIF%29::SNP::Pf3D7_01_v3::62976::p.Lys88Lys/c.264A>G
PF3D7_0101000::rifin+%28RIF%29::SNP::Pf3D7_01_v3::65886::p.Leu336Leu/c.1008A>G
PF3D7_0101000::rifin+%28RIF%29::SNP::Pf3D7_01_v3::65892::p.Ile334Ile/c.1002A>T
PF3D7_0101000::rifin+%28RIF%29::SNP::Pf3D7_01_v3::65895::p.Ile333Ile/c.999A>T
PF3D7_0115400::stevor::SNP::Pf3D7_01_v3::598679::p.Ser38Asn/c.113G>A
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613500::p.Glu465Gly/c.1394A>G
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613502::p.Glu464Asp/c.1392A>T
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613507::p.Glu463Lys/c.1387G>A
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613509::p.Gly462Val/c.1385G>T
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613536::p.Thr453Ile/c.1358C>T
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613539::p.Thr452Lys/c.1355C>A
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613540::p.Thr452Ala/c.1354A>G
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::614608::p.Asn96Asp/c.286A>G
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::614609::p.Ser95Ser/c.285C>G
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::614616::p.Arg93Pro/c.278G>C
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::614620::p.Glu92Lys/c.274G>A
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::614631::p.Glu88Gly/c.263A>G
PF3D7_0222100::Pfmc-2TM+Maurer%27s+cleft+two+transmembrane+protein+%28MC-2TM%29::SNP::Pf3D7_02_v3::878918::p.Val80Val/c.240T>C
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::44180::p.Asn2110Asp/c.6328A>G
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::44191::p.Thr2113Thr/c.6339T>A
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::44221::p.Asp2123Asp/c.6369T>C
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::44246::p.Asp2132His/c.6394G>C
PF3D7_0300200::rifin+%28RIF%29::SNP::Pf3D7_03_v3::47077::p.Glu91Asp/c.273A>T
PF3D7_0300200::rifin+%28RIF%29::SNP::Pf3D7_03_v3::47083::p.Asp89Glu/c.267T>A
PF3D7_0324800::rifin+%28RIF%29::SNP::Pf3D7_03_v3::1028684::p.Gln291Glu/c.871C>G
PF3D7_0324900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::1031914::p.Ile1806Ile/c.5418T>A
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29090::p.Cys129Gly/c.385T>G
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29093::p.Glu130Lys/c.388G>A
PF3D7_0400200::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+exon2%2C+pseudogene::SNP::Pf3D7_04_v3::39650::p.Asn232Asn/c.696C>T
PF3D7_0400400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::49010::p.Thr2617Thr/c.7851T>G
PF3D7_0400400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::49049::p.Lys2604Asn/c.7812A>T
PF3D7_0400400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::49052::p.Asn2603Lys/c.7809T>G
PF3D7_0400400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::49054::p.Asn2603Asp/c.7807A>G
PF3D7_0400400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::49060::p.Asp2601Asn/c.7801G>A
PF3D7_0400400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::56384::p.Leu159Leu/c.477G>A
PF3D7_0412400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::552738::p.Ser358Asn/c.1073G>A
PF3D7_0412400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::552740::p.Asn357Lys/c.1071T>A
PF3D7_0412700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::567264::p.Lys693Lys/c.2079G>A
PF3D7_0413200::rifin+%28RIF%29::SNP::Pf3D7_04_v3::604024::p.Arg91Arg/c.273C>T
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::963661::p.Val651Ile/c.1951G>A
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::963665::p.Ser649Arg/c.1947C>A
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::963668::p.Glu648Glu/c.1944A>G
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::963670::p.Glu648Gln/c.1942G>C
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::963672::p.Tyr647Phe/c.1940A>T
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::963677::p.Lys645Asn/c.1935A>T
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::969445::p.Phe2056Phe/c.6168T>C
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::969590::p.Asn2008Ser/c.6023A>G
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::969597::p.Ala2006Ser/c.6016G>T
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::969598::p.Asp2005Asp/c.6015C>T
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::969607::p.Leu2002Leu/c.6006A>G
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1166762::p.Glu3201Asp/c.9603G>T
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1166775::p.Leu3206Met/c.9616C>A
PF3D7_0500300::rifin%2C+pseudogene+%28RIF%29::SNP::Pf3D7_05_v3::30493::p.Glu102Asp/c.306A>T
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26864::p.Asn51Asn/c.153C>T
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26868::p.Tyr53Asp/c.157T>G
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26870::p.Tyr53Tyr/c.159T>C
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26872::p.Ser54Asn/c.161G>A
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26876::p.Asp55Asp/c.165C>T
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26878::p.Pro56Leu/c.167C>T
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26879::p.Pro56Pro/c.168A>C
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26880::p.Gln57Glu/c.169C>G
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26948::p.Arg79Ser/c.237G>T
PF3D7_0600500::rifin+%28RIF%29::SNP::Pf3D7_06_v3::26984::p.Cys91Cys/c.273T>C
PF3D7_0600600::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+exon2+%28VAR%29::SNP::Pf3D7_06_v3::30557::p.Thr128Thr/c.384A>T
PF3D7_0600600::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+exon2+%28VAR%29::SNP::Pf3D7_06_v3::30578::p.Leu121Leu/c.363A>T
PF3D7_0615500::cdc2-related+protein+kinase+5+%28CRK5%29::SNP::Pf3D7_06_v3::645039::p.Asn330Asp/c.988A>G
PF3D7_0632100::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1338770::p.Val140Val/c.420G>A
PF3D7_0632100::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1338773::p.Lys139Lys/c.417G>A
PF3D7_0632500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_06_v3::1354046::p.Thr3922Asn/c.11765C>A
PF3D7_0632800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_06_v3::1374981::p.Phe2178Tyr/c.6533T>A
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::25229::p.Val1641Val/c.4923G>T
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::25231::p.Arg1642Lys/c.4925G>A
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::25237::p.Phe1644Ser/c.4931T>C
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::27345::p.Tyr2041Tyr/c.6123C>T
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::27351::p.Tyr2043Tyr/c.6129C>T
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::27352::p.Asp2044Asn/c.6130G>A
PF3D7_0711700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::512894::p.Glu1902Gln/c.5704G>C
PF3D7_0711700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::513219::p.Gly1793Gly/c.5379C>G
PF3D7_0712000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::527892::p.Tyr2092Asn/c.6274T>A
PF3D7_0712000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::527919::p.Arg2083Arg/c.6247C>A
PF3D7_0712000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::530938::p.Glu1398Asp/c.4194G>T
PF3D7_0712000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::530942::p.Lys1397Ile/c.4190A>T
PF3D7_0712300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::546242::p.Lys1427Glu/c.4279A>G
PF3D7_0712300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::549212::p.Glu437Lys/c.1309G>A
PF3D7_0712300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::549213::p.Lys436Asn/c.1308G>C
PF3D7_0712300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::549638::p.Glu295Lys/c.883G>A
PF3D7_0712300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::549641::p.Glu294Lys/c.880G>A
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::567833::p.Met1847Ile/c.5541G>A
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::567842::p.Ile1844Ile/c.5532T>A
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::569462::p.Lys1616Ile/c.4847A>T
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::569476::p.Arg1611Ser/c.4833G>C
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::569480::p.Ala1610Val/c.4829C>T
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::574046::p.Gly88Ala/c.263G>C
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::582600::p.Met1836Leu/c.5506A>T
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::582601::p.Glu1835Glu/c.5505G>A
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::585121::p.Val1268Asp/c.3803T>A
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::585122::p.Val1268Ile/c.3802G>A
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::585123::p.Phe1267Leu/c.3801T>A
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::585138::p.Lys1262Asn/c.3786A>T
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::585140::p.Lys1262Glu/c.3784A>G
PF3D7_0712900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::592992::p.Gly1581Asp/c.4742G>A
PF3D7_0712900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::593005::p.Gln1577Lys/c.4729C>A
PF3D7_0712900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::593196::p.Arg1513Thr/c.4538G>C
PF3D7_0712900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::593203::p.Gln1511Lys/c.4531C>A
PF3D7_0712900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::595746::p.Asp663Ala/c.1988A>C
PF3D7_0712900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::595772::p.Asn654Lys/c.1962T>A
PF3D7_0732000::stevor::SNP::Pf3D7_07_v3::1386569::p.Leu278Leu/c.834G>A
PF3D7_0732000::stevor::SNP::Pf3D7_07_v3::1386575::p.Arg280Arg/c.840G>A
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1417882::p.Pro2498Pro/c.7494C>T
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1425314::p.Phe307Phe/c.921T>C
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1425823::p.His138Tyr/c.412C>T
PF3D7_0800300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::41517::p.Leu190Leu/c.570G>A
PF3D7_0800300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::41520::p.Ala191Ala/c.573G>A
PF3D7_0800300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::41837::p.Gly297Glu/c.890G>A
PF3D7_0800300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::41838::p.Gly297Gly/c.891A>C
PF3D7_0808600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::439018::p.Glu2255Glu/c.6765G>A
PF3D7_0833100::rifin+%28RIF%29::SNP::Pf3D7_08_v3::1421288::p.Thr213Ser/c.637A>T
PF3D7_0833100::rifin+%28RIF%29::SNP::Pf3D7_08_v3::1421310::p.Phe205Leu/c.615T>G
PF3D7_0833100::rifin+%28RIF%29::SNP::Pf3D7_08_v3::1421314::p.Tyr204Ser/c.611A>C
PF3D7_0900100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::24744::p.Gln1555His/c.4665A>T
PF3D7_0900100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::24755::p.Asn1559Ser/c.4676A>G
PF3D7_0900100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::24772::p.Ser1565Gly/c.4693A>G
PF3D7_0900500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::43042::p.Thr295Ser/c.884C>G
PF3D7_0900500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::43653::p.Lys91Lys/c.273A>G
PF3D7_0900500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::43659::p.Lys89Lys/c.267A>G
PF3D7_0900500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::43665::p.Arg87Arg/c.261C>T
PF3D7_0900500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::43672::p.Asp85Gly/c.254A>G
PF3D7_0900500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::43677::p.Ile83Met/c.249T>G
PF3D7_0901500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::75050::p.Ser134Ser/c.402A>G
PF3D7_0901600::stevor::SNP::Pf3D7_09_v3::78367::p.Ser135Ser/c.405G>T
PF3D7_0937500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::1481784::p.Glu91Asp/c.273A>T
PF3D7_0937500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::1481790::p.Asp89Glu/c.267T>A
PF3D7_0937500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::1481810::p.Glu83Lys/c.247G>A
PF3D7_0937500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::1481817::p.Thr80Thr/c.240A>C
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::1496032::p.Ala2114Ala/c.6342A>C
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::1501421::p.Tyr639Phe/c.1916A>T
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::1501423::p.Thr638Thr/c.1914A>G
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::1502697::p.Asp214Asn/c.640G>A
PF3D7_1100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::30901::p.Asn1951Ser/c.5852A>G
PF3D7_1150000::rifin+%28RIF%29::SNP::Pf3D7_11_v3::2014289::p.Leu361Leu/c.1083C>G
PF3D7_1150100::rifin%2C+pseudogene+%28RIF%29::SNP::Pf3D7_11_v3::2015754::p.Ala252Ala/c.756C>A
PF3D7_1150100::rifin%2C+pseudogene+%28RIF%29::SNP::Pf3D7_11_v3::2015759::p.Ile251Leu/c.751A>C
PF3D7_1150400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::2026271::p.Gly152Ala/c.455G>C
PF3D7_1150400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::2026337::p.Met174Thr/c.521T>C
PF3D7_1150400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::2026341::p.Phe175Leu/c.525C>A
PF3D7_1150400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::2035593::p.Asn3023Asp/c.9067A>G
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::24155::p.Thr2065Thr/c.6195G>T
PF3D7_1200400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::35321::p.Thr873Thr/c.2619C>A
PF3D7_1200400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::35347::p.Glu882Gly/c.2645A>G
PF3D7_1200400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::35348::p.Glu882Asp/c.2646G>T
PF3D7_1200400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::35361::p.Glu887Lys/c.2659G>A
PF3D7_1200400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::35363::p.Glu887Asp/c.2661G>T
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::770209::p.Ile1330Lys/c.3989T>A
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::770213::p.His1329Tyr/c.3985C>T
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::770220::p.Arg1326Arg/c.3978T>A
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::770221::p.Arg1326Pro/c.3977G>C
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::770228::p.Asp1324Tyr/c.3970G>T
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::770230::p.Pro1323Leu/c.3968C>T
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::770231::p.Pro1323Ser/c.3967C>T
PF3D7_1240300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1694791::p.Lys214Asn/c.642G>T
PF3D7_1240300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1694801::p.Glu218Lys/c.652G>A
PF3D7_1240300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1694802::p.Glu218Ala/c.653A>C
PF3D7_1240900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1736937::p.Ala465Ala/c.1395T>A
PF3D7_1255000::rifin+%28RIF%29::SNP::Pf3D7_12_v3::2235659::p.Ile302Ser/c.905T>G
PF3D7_1255000::rifin+%28RIF%29::SNP::Pf3D7_12_v3::2235666::p.Ile304Ile/c.912T>A
PF3D7_1255000::rifin+%28RIF%29::SNP::Pf3D7_12_v3::2235685::p.Ile311Leu/c.931A>T
PF3D7_1255000::rifin+%28RIF%29::SNP::Pf3D7_12_v3::2235687::p.Ile311Met/c.933A>G
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::2241466::p.Asp2204Glu/c.6612C>G
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::2241762::p.Ile2106Leu/c.6316A>C
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::2241766::p.Asn2104Asn/c.6312T>C
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::2241770::p.Leu2103His/c.6308T>A
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::2241862::p.Leu2072Leu/c.6216A>G
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::2241865::p.Leu2071Leu/c.6213A>G
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::2247985::p.Cys326Cys/c.978C>T
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::25494::p.Val1377Val/c.4131G>C
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::25501::p.Asn1380Asp/c.4138A>G
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::25503::p.Asn1380Asn/c.4140T>C
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::25507::p.Gly1382Arg/c.4144G>A
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::25508::p.Gly1382Ala/c.4145G>C
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::25512::p.Asn1383Lys/c.4149T>G
PF3D7_1300500::rifin+%28RIF%29::SNP::Pf3D7_13_v3::50905::c.55-11C>T
PF3D7_1300500::rifin+%28RIF%29::SNP::Pf3D7_13_v3::50920::p.Arg20His/c.59G>A
PF3D7_1300900::stevor::SNP::Pf3D7_13_v3::62953::p.Leu163Leu/c.489G>A
PF3D7_1300900::stevor::SNP::Pf3D7_13_v3::62961::p.Ala161Thr/c.481G>A
PF3D7_1300900::stevor::SNP::Pf3D7_13_v3::62962::p.Lys160Asn/c.480A>T
PF3D7_1300900::stevor::SNP::Pf3D7_13_v3::62969::p.Asn158Thr/c.473A>C
PF3D7_1322200::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::936488::c.5001-31T>A
PF3D7_1364400::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::2587125::p.Asp698Asp/c.2094C>T
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::SNP::Pf3D7_14_v3::1890::p.Lys166Asn/c.498A>T
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::SNP::Pf3D7_14_v3::1894::p.Glu168Gln/c.502G>C
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::SNP::Pf3D7_14_v3::1901::p.Gly170Asp/c.509G>A
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::SNP::Pf3D7_14_v3::1905::p.Lys171Asn/c.513A>T
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::SNP::Pf3D7_14_v3::1908::p.Cys172Cys/c.516C>T
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::SNP::Pf3D7_14_v3::4978::p.Pro857Thr/c.2569C>A
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::SNP::Pf3D7_14_v3::4980::p.Pro857Pro/c.2571T>A
PF3D7_1417400::cyclic+nucleotide-binding+protein%2C+putative%2C+pseudogene+%28cNBP%29::SNP::Pf3D7_14_v3::721986::p.Lys2232*/c.6694A>T
PF3D7_0100900::rifin+%28RIF%29::INDEL::Pf3D7_01_v3::62954::p.Ile95_Gln96insSer/c.285_286insAGT
PF3D7_0100900::rifin+%28RIF%29::INDEL::Pf3D7_01_v3::62956::p.Asp94_Ile95delinsVal/c.281_283delATA
PF3D7_0110500::bromodomain+protein%2C+putative::INDEL::Pf3D7_01_v3::399314::p.Asn913_Asn915del/c.2739_2747delTAAAAATAA
PF3D7_0115300::rifin+%28RIF%29::INDEL::Pf3D7_01_v3::595508::p.Arg83fs/c.247_248delCG
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_01_v3::613510::p.Lys457_Gln461del/c.1369_1383delAAATTGAATGATCAG
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_01_v3::614615::p.Ser95fs/c.278_279insC
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_01_v3::614621::p.Val91_Glu92insSer/c.272_273insTTC
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_01_v3::614625::p.Tyr90fs/c.268delT
PF3D7_0305500::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_03_v3::262545::p.Asn3580dup/c.10739_10741dupATA
PF3D7_0324800::rifin+%28RIF%29::INDEL::Pf3D7_03_v3::1028671::p.Phe288fs/c.861_864delTTTC
PF3D7_0324800::rifin+%28RIF%29::INDEL::Pf3D7_03_v3::1028675::p.Phe288fs/c.862_863insAAAA
PF3D7_0324800::rifin+%28RIF%29::INDEL::Pf3D7_03_v3::1028701::p.Ala296_Ala297insGlyMet/c.889_890insGAATGG
PF3D7_0324800::rifin+%28RIF%29::INDEL::Pf3D7_03_v3::1028703::p.Ala297_His298insAlaGluLysAlaAlaAsn/c.891_892insGCAGAAAAGGCTGCTAAT
PF3D7_0412400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::552157::p.Gly551fs/c.1652_1653delGT
PF3D7_0412400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::552170::p.Ser547fs/c.1640_1641insA
PF3D7_0412700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::568464::p.Ser293fs/c.878delG
PF3D7_0412700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::568468::p.Gly292fs/c.870_874delTAAAG
PF3D7_0412700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::568478::p.Ser288del/c.862_864delAGT
PF3D7_0413200::rifin+%28RIF%29::INDEL::Pf3D7_04_v3::604030::p.Glu89delinsAspGluArgThrIleLys/c.266_267insCGAACGTACGATCAA
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::963645::p.Lys656fs/c.1966_1967insG
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::963648::p.Lys655fs/c.1963_1964insG
PF3D7_0421100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::963655::p.Glu652fs/c.1955_1956delAA
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::1166764::p.Met3204fs/c.9610_9611delAT
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::1166771::p.Phe3205fs/c.9612_9613insCA
PF3D7_0500100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_05_v3::25371::p.Gly1482fs/c.4443_4444insAGAAAATGGT
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::25206::p.Asn1634_Ser1635delinsThr/c.4901_4903delATT
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::25215::p.Asp1637fs/c.4910dupA
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::25223::p.Pro1640fs/c.4918_4919delCC
PF3D7_0700100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::25226::p.Val1641fs/c.4920_4921insAC
PF3D7_0711700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::518231::p.Lys398_Lys399insGln/c.1194_1195insCAA
PF3D7_0711700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::518234::p.Val397del/c.1189_1191delGTG
PF3D7_0712000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::530939::p.Glu1398fs/c.4192delG
PF3D7_0712000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::530945::p.Glu1396fs/c.4185_4186delGG
PF3D7_0712300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::546228::p.Gly1431_Ile1432insThr/c.4292_4293insTAC
PF3D7_0712300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::546229::p.Glu1430del/c.4289_4291delAAG
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::567849::p.Glu1841fs/c.5523_5524delAT
PF3D7_0712600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::569463::p.Gly1615fs/c.4844_4845delGC
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::585127::p.Asp1266fs/c.3796delG
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::585131::p.Gln1265fs/c.3792_3793insG
PF3D7_0833000::rifin+%28RIF%29::INDEL::Pf3D7_08_v3::1417897::p.Val129fs/c.381_384delATCA
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_09_v3::1496024::p.Thr2117fs/c.6348_6349delTA
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_09_v3::1496028::p.Asn2116fs/c.6345_6346insCT
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_09_v3::1499108::p.Asn1410fs/c.4228_4229insG
PF3D7_1219300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::770038::p.Ser1387delinsCysThr/c.4159_4160insGCA
PF3D7_1240300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::1694809::p.Lys221fs/c.660_661insGA
PF3D7_1240600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::1720043::p.Asn157fs/c.470_471insAT
PF3D7_1240600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::1720045::p.Tyr158fs/c.473_474delAC
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::INDEL::Pf3D7_14_v3::1881::p.Phe163_Ile164insLys/c.490_491insAAA
PF3D7_1400100::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+truncated%2C+pseudogene::INDEL::Pf3D7_14_v3::1885::p.Val165_Lys166delinsGlu/c.494_496delTTA
PF3D7_1459200::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::2429016::p.Val359fs/c.1075dupG
PF3D7_1467000::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::2743910::p.Thr516fs/c.1545_1546dupAA
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC6452685::"Baragaña B, Forte B, et al. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proc Natl Acad Sci U S A. 2019;116(14):7015-7020. doi:10.1073/pnas.1814685116"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5515376::"Kato N, Comer E, et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature. 2016;538(7625):344-349. doi:10.1038/nature19804"
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMC7205385::"Steiner D, Krska R, et al. Evaluation of Matrix Effects and Extraction Efficiencies of LC–MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J Agric Food Chem. 2020;68(12):3868-3880. doi:10.1021/acs.jafc.9b07706"
PMC7204883::"Tanapichatsakul C, Pansanit A, et al. Antifungal activity of 8-methoxynaphthalen-1-ol isolated from the endophytic fungus Diatrype palmicola MFLUCC 17-0313 against the plant pathogenic fungus Athelia rolfsii on tomatoes. PeerJ. 2020;8():e9103. doi:10.7717/peerj.9103"
PMC7177413::"Ruiz-Márvez E, Ramírez CA, et al. Molecular Characterization of Tc964, A Novel Antigenic Protein from Trypanosoma cruzi. Int J Mol Sci. 2020;21(7):2432. doi:10.3390/ijms21072432"
PMC6989186::"Cary JW, Gilbert MK, et al. Aspergillus flavus Secondary Metabolites: More than Just Aflatoxins. Food Saf (Tokyo). 2018;6(1):7-32. doi:10.14252/foodsafetyfscj.2017024"
PMC6955228::"Kümpornsin K, Kochakarn T, et al. The resistome and genomic reconnaissance in the age of malaria elimination. Dis Model Mech. 2019;12(12):dmm040717. doi:10.1242/dmm.040717"
PMC6896759::"Tajuddeen N, Van Heerden FR Antiplasmodial natural products: an update. Malar J. 2019;18():404. doi:10.1186/s12936-019-3026-1"
PMC6891813::"Afiyatullov SS, Zhuravleva OI, et al. Piltunines A–F from the Marine-Derived Fungus Penicillium piltunense KMM 4668. Mar Drugs. 2019;17(11):647. doi:10.3390/md17110647"
PMC6891400::"Xu J, Yi M, et al. A Review of Anti-Inflammatory Compounds from Marine Fungi, 2000–2018. Mar Drugs. 2019;17(11):636. doi:10.3390/md17110636"
PMC6805675::"Cowell AN, Winzeler EA Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;11():63. doi:10.1186/s13073-019-0673-3"
PMC6792207::"Chhibber-Goel J, Joshi S, et al. Aminoacyl tRNA synthetases as potential drug targets of the Panthera pathogen Babesia. Parasit Vectors. 2019;12():482. doi:10.1186/s13071-019-3717-z"
PMC6796718::"Chhibber-Goel J, Sharma A Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance. Int J Parasitol Drugs Drug Resist. 2019;11():49-58. doi:10.1016/j.ijpddr.2019.10.001"
PMC6814666::Toghueo RM. Anti-leishmanial and Anti-inflammatory Agents from Endophytes: A Review. Nat Prod Bioprospect. 2019;9(5):311-328. doi:10.1007/s13659-019-00220-5
PMC6650792::"Yashiro E, Savova-Bianchi D, et al. Major Differences in the Diversity of Mycobiomes Associated with Wheat Processing and Domestic Environments: Significant Findings from High-Throughput Sequencing of Fungal Barcode ITS1. Int J Environ Res Public Health. 2019;16(13):2335. doi:10.3390/ijerph16132335"
PMC6563031::"Zhang FZ, Li XM, et al. Polyketides from the Mangrove-Derived Endophytic Fungus Cladosporium cladosporioides. Mar Drugs. 2019;17(5):296. doi:10.3390/md17050296"
PMC6517689::"Kjærbølling I, Vesth T, et al. Resistance Gene-Directed Genome Mining of 50 Aspergillus Species. mSystems. 2019;4(4):e00085-19. doi:10.1128/mSystems.00085-19"
PMC6589186::"Tang MC, Fischer CR, et al. Thioesterase-catalyzed aminoacylation and thiolation of polyketides in fungi. J Am Chem Soc. 2019;141(20):8198-8206. doi:10.1021/jacs.9b01083"
PMC6498573::"Goel P, Parvez S, et al. Genomic analyses of aminoacyl tRNA synthetases from human-infecting helminths. BMC Genomics. 2019;20():333. doi:10.1186/s12864-019-5679-0"
PMC6475138::"Aroonsri A, Posayapisit N, et al. Validation of Plasmodium falciparum deoxyhypusine synthase as an antimalarial target. PeerJ. 2019;7():e6713. doi:10.7717/peerj.6713"
PMC6476959::"Sachs J, Döhl K, et al. Novel 3,4-Dihydroisocoumarins Inhibit Human P-gp and BCRP in Multidrug Resistant Tumors and Demonstrate Substrate Inhibition of Yeast Pdr5. Front Pharmacol. 2019;10():400. doi:10.3389/fphar.2019.00400"
PMID32195573::"Zhou J, Zheng L, et al. Atomic Resolution Analyses of Isocoumarin Derivatives for Inhibition of Lysyl-tRNA Synthetase.. ACS Chem Biol. 2020;15(4):1016-1025. doi:3"
PMID31961156::"Lauro G, Das P, et al. DFT/NMR Approach for the Configuration Assignment of Groups of Stereoisomers by the Combination and Comparison of Experimental and Predicted Sets of Data.. J Org Chem. 2020;85(5):3297-3306. doi:3"
PMID31017332::"Chhibber-Goel J, Sharma A Side chain rotameric changes and backbone dynamics enable specific cladosporin binding in Plasmodium falciparum lysyl-tRNA synthetase.. Proteins. 2019;87(9):730-737. doi:3"
PMID30462880::"Rusch M, Thevenon A, et al. Design and Synthesis of Metabolically Stable tRNA Synthetase Inhibitors Derived from Cladosporin.. Chembiochem. 2019;20(5):644-649. doi:3"
PMID30347507::"Fredenhagen A, Schroer K, et al. Cladosporin Derivatives Obtained by Biotransformation Provide Guidance for the Focused Derivatization of this Antimalarial Lead Compound.. Chembiochem. 2019;20(5):650-654. doi:3"
PMID31401763::"Savi DC, Noriler SA, et al. Dihydroisocoumarins produced by Diaporthe cf. heveae LGMF1631 inhibiting citrus pathogens.. Folia Microbiol (Praha). 2020;65(2):381-392. doi:3"
PMID29779382::"Das P, Babbar P, et al. Specific Stereoisomeric Conformations Determine the Drug Potency of Cladosporin Scaffold against Malarial Parasite.. J Med Chem. 2018;61(13):5664-5678. doi:3"
PMC5577655::"Chadha S, Mallampudi NA, et al. Genetic Validation of Leishmania donovani Lysyl-tRNA Synthetase Shows that It Is Indispensable for Parasite Growth and Infectivity. mSphere. 2017;2(4):e00340-17. doi:10.1128/mSphereDirect.00340-17"
PMC6305384::"Shivapurkar R, Hingamire T, et al. Evaluating antimalarial efficacy by tracking glycolysis in Plasmodium falciparum using NMR spectroscopy. Sci Rep. 2018;8():18076. doi:10.1038/s41598-018-36197-3"
PMC5091859::"Sharma A, Sharma M, et al. Protein Translation Enzyme lysyl-tRNA Synthetase Presents a New Target for Drug Development against Causative Agents of Loiasis and Schistosomiasis. PLoS Negl Trop Dis. 2016;10(11):e0005084. doi:10.1371/journal.pntd.0005084"
PMID30549627::"Wang X, Wedge DE, et al. Chemical and Biological Study of Cladosporin, an Antimicrobial Inhibitor: A Review.. Nat Prod Commun. 2016;11(10):1595-1600. doi:"
PMC6462538::"Francklyn CS, Mullen P Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem. 2019;294(14):5365-5385. doi:10.1074/jbc.REV118.002956"
PMID28495036::"Fierro-Cruz JE, Jiménez P, et al. Fungal endophytes isolated from Protium heptaphyllum and Trattinnickia rhoifolia as antagonists of Fusarium oxysporum.. Rev Argent Microbiol. 2017;49(3):255-263. doi:3"
PMC4906947::"Cochrane RV, Sanichar R, et al. Identification and reconstitution of the polyketide synthases responsible for biosynthesis of the anti-malarial agent, cladosporin. Angew Chem Int Ed Engl. 2015;55(2):664-668. doi:10.1002/anie.201509345"
PMC4879988::"Saint-Léger A, Sinadinos C, et al. The growing pipeline of natural aminoacyl-tRNA synthetase inhibitors for malaria treatment. Bioengineered. 2016;7(2):60-64. doi:10.1080/21655979.2016.1149270"
PMID26091164::"Novoa EM, Ribas de Pouplana L Cooperation for Better Inhibiting.. Chem Biol. 2015;22(6):685-6. doi:3"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC4828885::Khan S. Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases. Malar J. 2016;15():203. doi:10.1186/s12936-016-1247-0
PMID24935905::"Khan S, Sharma A, et al. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin.. J Struct Funct Genomics. 2014;15(2):63-71. doi:3"
|
MMV1421890 |
CC1CCc2[nH]c3ccc(cc3c2C1)C(=O)Nc1ccccc1N1CCCCC1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
Neu-1029 |
COC1=CC=C(NC2=C3C=CC(=CC3=NC=C2)C2=CC=C(C=C2)S(=O)(=O)N2CCN(C)CC2)C=C1Cl |
|
PMC7176092::"Parravicini C, Lecca D, et al. Development of the first in vivo GPR17 ligand through an iterative drug discovery pipeline: A novel disease-modifying strategy for multiple sclerosis. PLoS One. 2020;15(4):e0231483. doi:10.1371/journal.pone.0231483"
PMC7176432::"Choi B, Cha M, et al. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. eLife. 2020;9():e53934. doi:10.7554/eLife.53934"
PMC7162159:: Posters. Clin Microbiol Infect. 2007;13():S109-S608. doi:10.1111/j.1469-0691.2007.01733.x
PMC7143374::Ontario Health (Quality) WangMyraMZhangYuanYShafiqueAmmaraAWalterMelissaM. Gene Expression Profiling Tests for Early-Stage Invasive Breast Cancer: A Health Technology Assessment. Ont Health Technol Assess Ser. 2020;20(10):1-234. doi:
PMC7137719::"Pedersen WS, Kral TR, et al. Increased BNST reactivity to affective images is associated with greater α-amylase response to social stress. Soc Cogn Affect Neurosci. 2020;14(12):1263-1272. doi:10.1093/scan/nsaa010"
PMC7128915:: Abstracts cont.. Clin Microbiol Infect. 2005;11():648-744. doi:10.1111/j.1469-0691.2005.01135.x
PMC7113728::"Seow H, Tanuseputro P, et al. Development and Validation of a Prognostic Survival Model With Patient-Reported Outcomes for Patients With Cancer. JAMA Netw Open. 2020;3(4):e201768. doi:10.1001/jamanetworkopen.2020.1768"
PMC7104560:: Abstract. Breast Cancer Res Treat. 2005;94(Suppl 1):S1-S301. doi:10.1007/s10549-005-1234-6
PMC7082344::"Xie YH, Chen YX, et al. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5():22. doi:10.1038/s41392-020-0116-z"
PMC7103907::" 10th Congress of International Society of Systemic Auto-Inflammatory Diseases (ISSAID): Genoa, Italy. 31 March - 3 April 2019. Pediatr Rheumatol Online J. 2019;17(Suppl 1):18. doi:10.1186/s12969-019-0313-x"
PMC6647636::"Ravaioli A, Bagli L, et al. Prognosis and prediction of response in breast cancer: the current role of the main biological markers: Review. Cell Prolif. 2007;31(3-4):113-126. doi:10.1111/j.1365-2184.1998.tb01190.x"
PMC7044238::"Tamune H, Ukita J, et al. Efficient Prediction of Vitamin B Deficiencies via Machine-Learning Using Routine Blood Test Results in Patients With Intense Psychiatric Episode. Front Psychiatry. 2020;10():1029. doi:10.3389/fpsyt.2019.01029"
PMC6941177::"Ajmal M, Yunus U, et al. Design, Synthesis, and Targeted Delivery of Fluorescent 1,2,4-Triazole–Peptide Conjugates to Pediatric Brain Tumor Cells. ACS Omega. 2019;4(27):22280-22291. doi:10.1021/acsomega.9b01903"
PMC6817452::"Sugita BM, Pereira SR, et al. Integrated copy number and miRNA expression analysis in triple negative breast cancer of Latin American patients. Oncotarget. 2019;10(58):6184-6203. doi:10.18632/oncotarget.27250"
PMC6994019::"Ling AY, Kurian AW, et al. Using natural language processing to construct a metastatic breast cancer cohort from linked cancer registry and electronic medical records data. JAMIA Open. 2019;2(4):528-537. doi:10.1093/jamiaopen/ooz040"
PMC7026640::"Orr MW, Mao Y, et al. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res. 2019;48(3):1029-1042. doi:10.1093/nar/gkz734"
PMC6603039::"Smith HW, Hirukawa A, et al. An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis. Nat Commun. 2019;10():2901. doi:10.1038/s41467-019-10681-4"
PMC6398279::"Yan S, Tran AP, et al. Dual-grid mesh-based Monte Carlo algorithm for efficient photon transport simulations in complex three-dimensional media. J Biomed Opt. 2019;24(2):020503. doi:10.1117/1.JBO.24.2.020503"
PMC6297226::"Martínez-Fábregas J, Prescott A, et al. Lysosomal protease deficiency or substrate overload induces an oxidative-stress mediated STAT3-dependent pathway of lysosomal homeostasis. Nat Commun. 2018;9():5343. doi:10.1038/s41467-018-07741-6"
PMC6025110::"Zhong Z, Pannu V, et al. KIAA0100 Modulates Cancer Cell Aggression Behavior of MDA-MB-231 through Microtubule and Heat Shock Proteins. Cancers (Basel). 2018;10(6):180. doi:10.3390/cancers10060180"
PMID32334465::"Hussein IA, Ahmed ST, et al. Immunohistochemical Expression of BRCA1 Protein, ER, PR and Her2/neu in Breast Cancer: A Clinicopathological Study.. Asian Pac J Cancer Prev. 2020;21(4):1025-1029. doi:3"
PMID31774024::"Hoffman NL, O'Connor PJ, et al. Relationships between Post-Concussion Sleep and Symptom Recovery: A Preliminary Study.. J Neurotrauma. 2020;37(8):1029-1036. doi:3"
PMID30663885::"Di Gregorio L, Congestri R, et al. Biofilm diversity, structure and matrix seasonality in a full-scale cooling tower.. Biofouling. 2018;34(10):1093-1109. doi:3"
PMID29480421::"Swartz SJ, Neu A, et al. Exit site and tunnel infections in children on chronic peritoneal dialysis: findings from the Standardizing Care to Improve Outcomes in Pediatric End Stage Renal Disease (SCOPE) Collaborative.. Pediatr Nephrol. 2018;33(6):1029-1035. doi:3"
PMID29969939::"Knoll RM, Reinshagen KL, et al. High Resolution Computed Tomography Atlas of the Porcine Temporal Bone and Skull Base: Anatomical Correlates for Traumatic Brain Injury Research.. J Neurotrauma. 2019;36(7):1029-1039. doi:3"
PMID28972792::"Arab A, Behravan J, et al. A nano-liposome vaccine carrying E75, a HER-2/neu-derived peptide, exhibits significant antitumour activity in mice.. J Drug Target. 2018;26(4):365-372. doi:3"
PMID28135142::"Loibl S, Denkert C How Much Information Do We Really Need After Neoadjuvant Therapy for Breast Cancer?. J Clin Oncol. 2017;35(10):1029-1030. doi:3"
PMID29968149::"Sampaio TB, de Oliveira LF, et al. Long-Term Neurobehavioral Consequences of a Single Ketamine Neonatal Exposure in Rats: Effects on Cellular Viability and Glutamate Transport in Frontal Cortex and Hippocampus.. Neurotox Res. 2018;34(3):649-659. doi:3"
PMID29256832::"Beck B, Gantner D, et al. Temporal Trends in Functional Outcomes after Severe Traumatic Brain Injury: 2006-2015.. J Neurotrauma. 2018;35(8):1021-1029. doi:3"
PMID27097059::"Turonova H, Neu TR, et al. The biofilm matrix of Campylobacter jejuni determined by fluorescence lectin-binding analysis.. Biofouling. 2016;32(5):597-608. doi:3"
PMC6010853::"Nahleh Z, Otoukesh S, et al. Disparities in breast cancer: a multi‐institutional comparative analysis focusing on American Hispanics. Cancer Med. 2018;7(6):2710-2717. doi:10.1002/cam4.1509"
PMID23814024::"Falahi F, Huisman C, et al. Towards sustained silencing of HER2/neu in cancer by epigenetic editing.. Mol Cancer Res. 2013;11(9):1029-39. doi:3"
PMID26961151::"Michiels S, Pugliano L, et al. Progression-free survival as surrogate end point for overall survival in clinical trials of HER2-targeted agents in HER2-positive metastatic breast cancer.. Ann Oncol. 2016;27(6):1029-34. doi:3"
PMID22509741::"Buchholz F, Lerchner J, et al. Chip-calorimetry provides real time insights into the inactivation of biofilms by predatory bacteria.. Biofouling. 2012;28(3):351-62. doi:3"
PMC6596603::"Bokiniec P, Shahbazian S, et al. Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract. J Neurosci. 2017;37(27):6558-6574. doi:10.1523/JNEUROSCI.0200-17.2017"
PMC5378661::"Bhattarai P, Vance D, et al. An In Vitro Demonstration of Overcoming Drug Resistance in SKOV3 TR and MCF7 ADR with Targeted Delivery of Polymer Pro-Drug Conjugates. J Drug Target. 2017;25(5):436-450. doi:10.1080/1061186X.2016.1271421"
PMC6200838::"Fehlbaum LV, Raschle NM, et al. Altered Neuronal Responses During an Affective Stroop Task in Adolescents With Conduct Disorder. Front Psychol. 2018;9():1961. doi:10.3389/fpsyg.2018.01961"
PMC5523829::"Dulberger CL, McMurtrey CP, et al. Human leukocyte antigen F (HLA-F) presents peptides and regulates immunity through interactions with NK-cell receptors. Immunity. 2017;46(6):1018-1029.e7. doi:10.1016/j.immuni.2017.06.002"
PMC5812011::"Dodgion CM, Lipsitz SR, et al. Institutional variation in surgical care for early-stage breast cancer at community hospitals. J Surg Res. 2016;211():196-205. doi:10.1016/j.jss.2016.11.065"
PMC4947584::"Imbir KK. Affective Norms for 4900 Polish Words Reload (ANPW_R): Assessments for Valence, Arousal, Dominance, Origin, Significance, Concreteness, Imageability and, Age of Acquisition. Front Psychol. 2016;7():1081. doi:10.3389/fpsyg.2016.01081"
PMID23442513::"Perez-Orribo L, Little AS, et al. Biomechanical evaluation of the craniovertebral junction after anterior unilateral condylectomy: implications for endoscopic endonasal approaches to the cranial base.. Neurosurgery. 2013;72(6):1021-29; discussion 1029-30. doi:3"
PMC4492552::"Maneshi MM, Sachs F, et al. A Threshold Shear Force for Calcium Influx in an Astrocyte Model of Traumatic Brain Injury. J Neurotrauma. 2015;32(13):1020-1029. doi:10.1089/neu.2014.3677"
PMC4084951::"Jiang X, Kanda T, et al. Suppression of La Antigen Exerts Potential Antiviral Effects against Hepatitis A Virus. PLoS One. 2014;9(7):e101993. doi:10.1371/journal.pone.0101993"
|
GNF-Pf-3582 |
FC1=CC=CC=C1C1SC2=CC=CC=C2N=C2C1C(=O)C1=CC=CC=C21 |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
Verapamil |
CC(C)C(CCCN(C)CCC1=CC=C(OC)C(OC)=C1)(C#N)C2=CC(OC)=C(OC)C=C2 |
PF3D7_0824900::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_08_v3::1080639::p.Asp785Asn/c.2353G>A
PF3D7_0908800::transporter%2C+putative::SNP::Pf3D7_09_v3::406203::p.Val564Glu/c.1691T>A
PF3D7_1305300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::261861::p.Leu1774Phe/c.5322A>T
|
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMC7248475::"Luo W, Liu RS, et al. Identification, characterization and microRNA expression profiling of side population cells in human oral squamous cell carcinoma Tca8113 cell lines. Mol Med Rep. 2020;22(1):286-296. doi:10.3892/mmr.2020.11073"
PMC7245191::"Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020;():1-19. doi:10.1007/s10930-020-09901-4"
PMC7243903::"Hamilton KE, Shelton CM, et al. Persistent Hypersomnolence Following Clobazam in a Child With Epilepsy and Undiagnosed CYP2C19 Polymorphism. J Pediatr Pharmacol Ther. 2020;25(4):320-327. doi:10.5863/1551-6776-25.4.320"
PMC7243011::"Abe N, Toyama H, et al. α 1-Adrenergic Receptor Blockade by Prazosin Synergistically Stabilizes Rat Peritoneal Mast Cells. Biomed Res Int. 2020;2020():3214186. doi:10.1155/2020/3214186"
PMC7235838::"Radakovic S, Andreoli N, et al. Taurolidine Acts on Bacterial Virulence Factors and Does Not Induce Resistance in Periodontitis-Associated Bacteria—An In-Vitro Study. Antibiotics (Basel). 2020;9(4):166. doi:10.3390/antibiotics9040166"
PMC7232442::"Nové M, Kincses A, et al. Biofilm Eradication by Symmetrical Selenoesters for Food-Borne Pathogens. Microorganisms. 2020;8(4):566. doi:10.3390/microorganisms8040566"
PMC7230618::"Venkataraman S, Karim S, et al. Sleep Disordered Breathing in Hypertrophic Cardiomyopathy—Current State and Future Directions. J Clin Med. 2020;9(4):901. doi:10.3390/jcm9040901"
PMC7230535::"Cong Y, Han X, et al. Drug Toxicity Evaluation Based on Organ-on-a-Chip Technology: A Review. Micromachines (Basel). 2020;11(4):381. doi:10.3390/mi11040381"
PMC7221958::"Pinto MM, Fernandes C, et al. Chiral Separations in Preparative Scale: A Medicinal Chemistry Point of View. Molecules. 2020;25(8):1931. doi:10.3390/molecules25081931"
PMC7214373::"Hyeon CW, Lee W, et al. Prevention of medical malpractice and disputes through analysis of lawsuits related to coronary angiography and intervention. Korean J Intern Med. 2019;35(3):605-618. doi:10.3904/kjim.2018.365"
PMC7221826::"Shahraki O, Khoshneviszadeh M, et al. 5-Oxo-hexahydroquinoline Derivatives and Their Tetrahydroquinoline Counterparts as Multidrug Resistance Reversal Agents. Molecules. 2020;25(8):1839. doi:10.3390/molecules25081839"
PMC7238995::"Ruscica M, Corsini A, et al. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res. 2020;():104916. doi:10.1016/j.phrs.2020.104916"
PMC7237099::"Howard AA, Rojas-Delgado F, et al. Complete AV Block Induced by Right Coronary Artery Spasm Following Radiofrequency Ablation for Atrial Fibrillation. J Atr Fibrillation. 2019;12(3):2257. doi:10.4022/jafib.2257"
PMC7034088::"Xing H, Luo X, et al. Effect of verapamil on the pharmacokinetics of hydroxycamptothecin and its potential mechanism. Pharm Biol. 2020;58(1):152-156. doi:10.1080/13880209.2020.1717550"
PMC7170370::"Yang L, Zhang C, et al. Shenmai injection suppresses multidrug resistance in MCF-7/ADR cells through the MAPK/NF-κB signalling pathway. Pharm Biol. 2020;58(1):276-285. doi:10.1080/13880209.2020.1742167"
PMID32459066::"Abou-Taleb DAE, Badary DM Intralesional verapamil in the treatment of keloids: A clinical, histopathological, and immunohistochemical study.. J Cosmet Dermatol. 2020;():. doi:3"
PMID32400925::"Liu R, Yang B, et al. Efficacy and safety of verapamil vs triamcinolone acetonide for keloids and hypertrophic scars: a systematic review and meta-analysis.. Dermatol Ther. 2020;():e13564. doi:3"
PMC7214748::"Popović N, Morales-Delgado N, et al. Verapamil and Alzheimer’s Disease: Past, Present, and Future. Front Pharmacol. 2020;11():562. doi:10.3389/fphar.2020.00562"
PMC7138547::"Liu W, Lin H, et al. Verapamil extends lifespan in Caenorhabditis elegans by inhibiting calcineurin activity and promoting autophagy. Aging (Albany NY). 2020;12(6):5300-5317. doi:10.18632/aging.102951"
PMC7179878::"Nodari R, Corbett Y, et al. Effects of combined drug treatments on Plasmodium falciparum: In vitro assays with doxycycline, ivermectin and efflux pump inhibitors. PLoS One. 2020;15(4):e0232171. doi:10.1371/journal.pone.0232171"
PMID32195728::"Jiang ZY, Liao XC, et al. The Safety and Efficacy of Intralesional Verapamil Versus Intralesional Triamcinolone Acetonide for Keloids and Hypertrophic Scars: A Systematic Review and Meta-analysis.. Adv Skin Wound Care. 2020;33(4):1-7. doi:3"
PMC7203140::"Nasr R, Lorendeau D, et al. Molecular analysis of the massive GSH transport mechanism mediated by the human Multidrug Resistant Protein 1/ABCC1. Sci Rep. 2020;10():7616. doi:10.1038/s41598-020-64400-x"
PMC7015412::"Park JW, Hong SP, et al. 99mTc-MIBI uptake as a marker of mitochondrial membrane potential in cancer cells and effects of MDR1 and verapamil. PLoS One. 2020;15(2):e0228848. doi:10.1371/journal.pone.0228848"
PMID31900997::"Bozorgmehr R, Edalatifard M, et al. Therapeutic effects of nebulized verapamil on chronic obstructive pulmonary disease: A randomized and double-blind clinical trial.. Clin Respir J. 2020;14(4):370-381. doi:3"
PMID32416700::"Farman S, Javed A, et al. Benzophenone Sulfonamide Derivatives as Interacting Partners and Inhibitors of Human P-glycoprotein.. Anticancer Agents Med Chem. 2020;():. doi:3"
PMC7139505::"Michaelis M, Voges Y, et al. Testing of the Survivin Suppressant YM155 in a Large Panel of Drug-Resistant Neuroblastoma Cell Lines. Cancers (Basel). 2020;12(3):577. doi:10.3390/cancers12030577"
PMC7077963::"Hegstad S, Spigset O, et al. Stability of 21 Antihypertensive Drugs in Serum Collected in Standard (Nongel) Serum Tubes Versus Tubes Containing a Gel Separator. Ther Drug Monit. 2020;42(2):335-340. doi:10.1097/FTD.0000000000000708"
PMC7178892::"Wang H, Dong L, et al. Effects of glycyrrhizin on the pharmacokinetics of nobiletin in rats and its potential mechanism. Pharm Biol. 2020;58(1):352-356. doi:10.1080/13880209.2020.1751661"
PMID32298554::"Bayer R, Artmann AT, et al. Mechano-Pharmacological Testing of L-Type Ca<sup>2+</sup> Channel Modulators via Human Vascular Celldrum Model.. Cell Physiol Biochem. 2020;54(3):371-383. doi:3"
PMC7231360::"Kanade PP, Oyunbaatar NE, et al. Polymer-Based Functional Cantilevers Integrated with Interdigitated Electrode Arrays—A Novel Platform for Cardiac Sensing. Micromachines (Basel). 2020;11(4):450. doi:10.3390/mi11040450"
PMC6998752::"Danish L, Siddiq R, et al. Comparative Study of Protective Effect of Cimetidine and Verapamil on Paracetamol-Induced Hepatotoxicity in Mice. Int J Hepatol. 2020;2020():9185361. doi:10.1155/2020/9185361"
PMC7219279::"Lin SS, Liu CX, et al. Intervention Mechanisms of Xinmailong Injection, a Periplaneta Americana Extract, on Cardiovascular Disease: A Systematic Review of Basic Researches. Evid Based Complement Alternat Med. 2019;2019():8512405. doi:10.1155/2019/8512405"
PMC7227945::"BOLOURCHIAN N, BAHJAT M Design and In Vitro Evaluation of Eudragit-Based Extended Release Diltiazem Microspheres for Once- and Twice-Daily Administration: The Effect of Coating on Drug Release Behavior. Turk J Pharm Sci. 2019;16(3):340-347. doi:10.4274/tjps.galenos.2018.24861"
PMC7227913::"ABBAS AK, ALHAMDANY AT Floating Microspheres of Enalapril Maleate as a Developed Controlled Release Dosage Form: Investigation of the Effect of an Ionotropic Gelation Technique. Turk J Pharm Sci. 2020;17(2):159-171. doi:10.4274/tjps.galenos.2018.15046"
PMC7227847::YENİLMEZ E. Desloratadine-Eudragit® RS100 Nanoparticles: Formulation and Characterization. Turk J Pharm Sci. 2017;14(2):148-156. doi:10.4274/tjps.52523
PMC7237344::"Moccia F, Gerbino A, et al. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience. 2020;():1-29. doi:10.1007/s11357-020-00198-w"
PMC7218117::"Kalibala J, Pechère-Bertschi A, et al. Gender Differences in Cardiovascular Pharmacotherapy—the Example of Hypertension: A Mini Review. Front Pharmacol. 2020;11():564. doi:10.3389/fphar.2020.00564"
PMC7232864::"Taskar KS, Pilla Reddy V, et al. Physiologically‐Based Pharmacokinetic Models for Evaluating Membrane Transporter Mediated Drug–Drug Interactions: Current Capabilities, Case Studies, Future Opportunities, and Recommendations. Clin Pharmacol Ther. 2019;107(5):1082-1115. doi:10.1002/cpt.1693"
PMID32455555::"Han SY, Choi YH Pharmacokinetic Interaction between Metformin and Verapamil in Rats: Inhibition of the OCT2-Mediated Renal Excretion of Metformin by Verapamil.. Pharmaceutics. 2020;12(5):. doi:3"
PMC7182798::"Pham P, Schmidt S, et al. Association of Oral Anticoagulants and Verapamil or Diltiazem With Adverse Bleeding Events in Patients With Nonvalvular Atrial Fibrillation and Normal Kidney Function. JAMA Netw Open. 2020;3(4):e203593. doi:10.1001/jamanetworkopen.2020.3593"
PMID32406167::"Meng X, Yang X, et al. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis.. Pest Manag Sci. 2020;():. doi:3"
PMID32134711::"Audi SH, Cammarata A, et al. Quantification of mitochondrial membrane potential in the isolated rat lung using rhodamine 6G.. J Appl Physiol (1985). 2020;128(4):892-906. doi:3"
PMID31407082::"Mikeladze KG, Okishev DN, et al. Intra-arterial Administration of Verapamil for the Prevention and Treatment of Cerebral Angiospasm.. Acta Neurochir Suppl. 2020;127():179-183. doi:3"
PMC7207936::"Spiro A, Hoang TD, et al. SUN-114 Successful Long-Term Medical Management of Insulinomas. J Endocr Soc. 2020;4(Suppl 1):SUN-114. doi:10.1210/jendso/bvaa046.156"
|
Desoxyepothilone B |
O=C1O[C@@H](C/C=C(/C)\CCC[C@@H]([C@@H]([C@H](C(=O)C([C@H](C1)O)(C)C)C)O)C)/C(=C/c1csc(n1)C)/C |
|
PMC7168462::"Kavallaris M, Marshall GM Proteomics and disease: opportunities and challenges. Med J Aust. 2005;182(11):575-579. doi:10.5694/j.1326-5377.2005.tb06817.x"
PMC7157942::"Wheeler KM, Cárcamo-Oyarce G, et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol. 2019;4(12):2146-2154. doi:10.1038/s41564-019-0581-8"
PMC6996233::"Cheng J, Wang R, et al. ST6GAL2 Downregulation Inhibits Cell Adhesion and Invasion and is Associated with Improved Patient Survival in Breast Cancer. Onco Targets Ther. 2020;13():903-914. doi:10.2147/OTT.S230847"
PMC6547982::"Ashu EE, Xu J, et al. Bacteria in Cancer Therapeutics: A Framework for Effective Therapeutic Bacterial Screening and Identification. J Cancer. 2019;10(8):1781-1793. doi:10.7150/jca.31699"
PMC6422724::"Nishioka C, Liang HF, et al. Amyloid-beta induced retrograde axonal degeneration in a mouse tauopathy model. Neuroimage. 2019;189():180-191. doi:10.1016/j.neuroimage.2019.01.007"
PMC6275538::"Pineda JJ, Miller MA, et al. Site occupancy calibration of taxane pharmacology in live cells and tissues. Proc Natl Acad Sci U S A. 2018;115(48):E11406-E11414. doi:10.1073/pnas.1800047115"
PMC6135871::"Pang X, Li H, et al. Multiple Roles of Glycans in Hematological Malignancies. Front Oncol. 2018;8():364. doi:10.3389/fonc.2018.00364"
PMC6092511::"Varidaki A, Hong Y, et al. Repositioning Microtubule Stabilizing Drugs for Brain Disorders. Front Cell Neurosci. 2018;12():226. doi:10.3389/fncel.2018.00226"
PMC6041177::"Kozlik P, Goldman R, et al. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal Bioanal Chem. 2018;410(20):5001-5008. doi:10.1007/s00216-018-1150-3"
PMC5653692::"Bosseboeuf A, Allain-Maillet S, et al. Pro-inflammatory State in Monoclonal Gammopathy of Undetermined Significance and in Multiple Myeloma Is Characterized by Low Sialylation of Pathogen-Specific and Other Monoclonal Immunoglobulins. Front Immunol. 2017;8():1347. doi:10.3389/fimmu.2017.01347"
PMC5663998::"Anugraham M, Jacob F, et al. Tissue glycomics distinguish tumour sites in women with advanced serous adenocarcinoma. Mol Oncol. 2017;11(11):1595-1615. doi:10.1002/1878-0261.12134"
PMC5652950::"Li Y, Zhou W, et al. Silencing Aurora A leads to re-sensitization of breast cancer cells to Taxol through downregulation of SRC-mediated ERK and mTOR pathways. Oncol Rep. 2017;38(4):2011-2022. doi:10.3892/or.2017.5908"
PMC5535963::"Lee JH, Kim MS, et al. The Application of REDOR NMR to Understand the Conformation of Epothilone B. Int J Mol Sci. 2017;18(7):1472. doi:10.3390/ijms18071472"
PMC5345333::"Bailon-Moscoso N, Cevallos-Solorzano G, et al. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies. Curr Genomics. 2017;18(2):106-131. doi:10.2174/1389202917666160808125645"
PMC5372660::"Woods LM, Arico JW, et al. Synthesis and Biological Evaluation of 7-Deoxy-Epothilone Analogues. Int J Mol Sci. 2017;18(3):648. doi:10.3390/ijms18030648"
PMC5156807::"Carie A, Sullivan B, et al. Stabilized Polymer Micelles for the Development of IT-147, an Epothilone D Drug-Loaded Formulation. J Drug Deliv. 2016;2016():8046739. doi:10.1155/2016/8046739"
PMC5056068::"Yang CP, Yap EH, et al. 2-(m-Azidobenzoyl)taxol binds differentially to distinct β-tubulin isotypes. Proc Natl Acad Sci U S A. 2016;113(40):11294-11299. doi:10.1073/pnas.1613286113"
PMC5013313::"Everest-Dass AV, Briggs MT, et al. N-glycan MALDI Imaging Mass Spectrometry on Formalin-Fixed Paraffin-Embedded Tissue Enables the Delineation of Ovarian Cancer Tissues . Mol Cell Proteomics. 2016;15(9):3003-3016. doi:10.1074/mcp.M116.059816"
PMC5041906::"Wu J, Qin H, et al. Characterization of site-specific glycosylation of secreted proteins associated with multi-drug resistance of gastric cancer. Oncotarget. 2016;7(18):25315-25327. doi:10.18632/oncotarget.8287"
PMC4845752::"Ranade AR, Higgins L, et al. Characterizing the Epothilone Binding Site on β-Tubulin by Photoaffinity Labeling: Identification of β-Tubulin Peptides TARGSQQY and TSRGSQQY as Targets of an Epothilone Photoprobe for Polymerized Tubulin. J Med Chem. 2016;59(7):3499-3514. doi:10.1021/acs.jmedchem.6b00188"
PMC3226403::"Nakano M, Saldanha R, et al. Identification of Glycan Structure Alterations on Cell Membrane Proteins in Desoxyepothilone B Resistant Leukemia Cells. Mol Cell Proteomics. 2011;10(11):M111.009001. doi:10.1074/mcp.M111.009001"
PMID15700849::"Bergstralh DT, Taxman DJ, et al. A comparison of signaling activities induced by Taxol and desoxyepothilone B.. J Chemother. 2004;16(6):563-76. doi:3"
PMID15788167::"Broadrup RL, Sundar HM, et al. Total synthesis of 12,13-desoxyepothilone B (Epothilone D).. Bioorg Chem. 2005;33(2):116-33. doi:3"
PMID12890533::"Verrills NM, Flemming CL, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions.. Chem Biol. 2003;10(7):597-607. doi:3"
PMID16616824::"Wang Z, Wang H, et al. Determination of desoxyepothilone B in nude mice plasma by liquid-liquid extraction and reversed-phase high-performance liquid chromatography.. J Pharm Biomed Anal. 2006;42(2):272-6. doi:3"
PMID12398496::"Chappell MD, Harris CR, et al. Probing the SAR of dEpoB via chemical synthesis: a total synthesis evaluation of C26-(1,3-dioxolanyl)-12,13-desoxyepothilone B.. J Org Chem. 2002;67(22):7730-6. doi:3"
PMID15339176::"Rivkin A, Yoshimura F, et al. Discovery of (E)-9,10-dehydroepothilones through chemical synthesis: on the emergence of 26-trifluoro-(E)-9,10-dehydro-12,13-desoxyepothilone B as a promising anticancer drug candidate.. J Am Chem Soc. 2004;126(35):10913-22. doi:3"
PMID29788770::"Cheng H, Huang G Synthesis & antitumor activity of epothilones B and D and their analogs.. Future Med Chem. 2018;10(12):1483-1496. doi:3"
PMID29752944::"Vagnozzi AN, Silver J Targeting the cytoskeleton with an FDA approved drug to promote recovery after spinal cord injury.. Exp Neurol. 2018;306():260-262. doi:3"
PMID30472945::"Pchitskaya EI, Zhemkov VA, et al. Dynamic Microtubules in Alzheimer's Disease: Association with Dendritic Spine Pathology.. Biochemistry (Mosc). 2018;83(9):1068-1074. doi:3"
PMID10841497::"Chappell MD, Stachel SJ, et al. En route to a plant scale synthesis of the promising antitumor agent 12,13-desoxyepothilone B.. Org Lett. 2000;2(11):1633-6. doi:3"
PMC28124::"Chou TC, Zhang XG, et al. Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc Natl Acad Sci U S A. 1998;95(26):15798-15802. doi:10.1073/pnas.95.26.15798"
PMC21392::"Chou TC, Zhang XG, et al. Desoxyepothilone B: An efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc Natl Acad Sci U S A. 1998;95(16):9642-9647. doi:10.1073/pnas.95.16.9642"
PMID29437244::"Ke YD, Ittner LM Epothilone D - correct drug, wrong disease.. Neuropathol Appl Neurobiol. 2018;44(6):548-549. doi:3"
PMID30073925::"Cheng H, Huang G Synthesis and Activity of Epothilone D.. Curr Drug Targets. 2018;19(15):1866-1870. doi:3"
PMID29673913::"Valdinocci D, Grant GD, et al. Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates.. Mol Cell Neurosci. 2018;89():80-94. doi:3"
PMID27792853::"Haydl AM, Breit B The Total Synthesis of Epothilone D as a Yardstick for Probing New Methodologies.. Chemistry. 2017;23(3):541-545. doi:3"
PMID29380402::"Clark JA, Blizzard CA, et al. Epothilone D accelerates disease progression in the SOD1<sup>G93A</sup> mouse model of amyotrophic lateral sclerosis.. Neuropathol Appl Neurobiol. 2018;44(6):590-605. doi:3"
PMID26803504::"Ye W, Zhang W, et al. A new approach for improving epothilone B yield in Sorangium cellulosum by the introduction of vgb epoF genes.. J Ind Microbiol Biotechnol. 2016;43(5):641-50. doi:3"
PMID26158758::"Burrell RC, Turley WA, et al. Synthesis of stable isotope-labeled epothilone D using a degradation-reconstruction approach.. J Labelled Comp Radiopharm. 2015;58(9):361-9. doi:3"
PMID25684676::"Brizuela M, Blizzard CA, et al. The microtubule-stabilizing drug Epothilone D increases axonal sprouting following transection injury in vitro.. Mol Cell Neurosci. 2015;66(Pt B):129-40. doi:3"
PMID24079664::"Wessjohann LA, Scheid GO, et al. Total synthesis of epothilone D: the nerol/macroaldolization approach.. J Org Chem. 2013;78(21):10588-95. doi:3"
PMID23994325::"Sang F, Feng P, et al. Epothilone D and its 9-Methyl analogues: combinatorial syntheses, conformation, and biological activities.. Eur J Med Chem. 2013;68():321-32. doi:3"
PMID25151331::"Yuan L, Fu Y, et al. Use of a carboxylesterase inhibitor of phenylmethanesulfonyl fluoride to stabilize epothilone D in rat plasma for a validated UHPLC-MS/MS assay.. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;969():60-8. doi:3"
PMC4550178::"Zagouri F, Sergentanis TN, et al. Epothilones in epithelial ovarian, fallopian tube, or primary peritoneal cancer: a systematic review. Onco Targets Ther. 2015;8():2187-2198. doi:10.2147/OTT.S77342"
|
MMV668399 |
C(C1CCN(CC1)C1=NC(=NC(=C1)C1=CC=CN=C1)C1=CC=NC=C1)N1CCOCC1 |
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::973769::G941
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::973775::K939
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::973779::G938D
PF3D7_0629500::amino+acid+transporter%2C+putative::SNP::Pf3D7_06_v3::1214868::P380S
PF3D7_0629500::amino+acid+transporter%2C+putative::SNP::Pf3D7_06_v3::1215292::K238N
PF3D7_0629500::amino+acid+transporter%2C+putative::SNP::Pf3D7_06_v3::1215453::V185L
PF3D7_0909700::FHA+domain+protein%2C+putative::SNP::Pf3D7_09_v3::440914::M1V
PF3D7_0909700::FHA+domain+protein%2C+putative::SNP::Pf3D7_09_v3::441197::L95R
PF3D7_0928100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::1137311::K291N
PF3D7_1227100::DNA+helicase+60+%28DH60%29::SNP::Pf3D7_12_v3::1094758::T338
PF3D7_1471200::inorganic+anion+exchanger%2C+inorganic+anion+antiporter+%28SulP%29::SNP::Pf3D7_14_v3::2914955::I596M
PF3D7_1475400::cysteine+repeat+modular+protein+4+%28CRMP4%29::SNP::Pf3D7_14_v3::3103130::A551D
mal_mito_1::cytochrome+c+oxidase+subunit+3+%28cox3%29::SNP::M76611::1016::T157
PF3D7_0114400::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+exon2%2C+pseudogene+%28VAR%29::INDEL::Pf3D7_01_v3::554447::-326
PF3D7_0210200::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_02_v3::416046::N1697KII
PF3D7_0220800::cytoadherence+linked+asexual+protein+2+%28CLAG2%29::INDEL::Pf3D7_02_v3::839826::
PF3D7_0307700::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_03_v3::331072::PANVVPANVVP1245P
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::973760::G944AKVS
PF3D7_0726000::28S+ribosomal+RNA::INDEL::Pf3D7_07_v3::1087773::-402?
PF3D7_1202300::dynein+heavy+chain%2C+putative::INDEL::Pf3D7_12_v3::137608::NN4618-
PF3D7_1230700::protein+transport+protein+Sec13%2C+putative::INDEL::Pf3D7_12_v3::1261119::GPPSQMN501-
PF3D7_0305300::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_03_v3::255331::V939E
PF3D7_0305500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_03_v3::262510::F3593I
PF3D7_0410700::GTPase%2C+putative::SNP::Pf3D7_04_v3::482505::N463Y
PF3D7_0909700::FHA+domain+protein%2C+putative::SNP::Pf3D7_09_v3::442087::K392*
PF3D7_0909700::FHA+domain+protein%2C+putative::SNP::Pf3D7_09_v3::443072::G720E
PF3D7_1471200::inorganic+anion+exchanger%2C+inorganic+anion+antiporter+%28SulP%29::SNP::Pf3D7_14_v3::2914571::D520Y
PF3D7_1471200::inorganic+anion+exchanger%2C+inorganic+anion+antiporter+%28SulP%29::SNP::Pf3D7_14_v3::2915012::K615N
PF3D7_0526600::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_05_v3::1106725::ENVVVP1842-
PF3D7_0721000::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_07_v3::910031::KKYDQHDLCDQ1914K
PF3D7_0829000::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_08_v3::1248470::VVNSVD1039V
PF3D7_0924500::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_09_v3::993858::
PF3D7_1255200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::2243394::
PF3D7_1322200::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::939262::
PF3D7_1341900::vacuolar+ATP+synthase+subunit+d%2C+putative::INDEL::Pf3D7_13_v3::1650247::
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV1528403 |
FC(F)(F)Sc1ccc(NC2=NC(=O)Oc3ccccc23)cc1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV011895 |
NC1=CC=C(C=C1)C1=NC2=CC(OC3=CC=C(OC4=CC=C5NC(=NC5=C4)C4=CC=C(N)C=C4)C=C3)=CC=C2N1 |
PF3D7_0214600::serine%2Fthreonine+protein+kinase%2C+putative::SNP::Pf3D7_02_v3::598632::S1479
PF3D7_0425900::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1171157::L316
PF3D7_0425900::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1171163::Y318
PF3D7_0425900::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1171166::I319
PF3D7_0425900::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1171176::E323K
PF3D7_0425900::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1171178::E323D
PF3D7_0425900::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1171179::E324Q
PF3D7_0425900::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1171184::*325
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1173647::L1952
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1173649::L1952I
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1173656::Y1949
PF3D7_0426000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1173662::D1947
PF3D7_0629500::amino+acid+transporter%2C+putative::SNP::Pf3D7_06_v3::1215318::F230L
PF3D7_0632200::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1342090::T117
PF3D7_0632200::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1342093::H116Q
PF3D7_0632200::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1342099::A114
PF3D7_0632200::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1342101::A114T
PF3D7_0632200::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1342102::S113
PF3D7_0632200::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1342129::I104
PF3D7_0632200::rifin+%28RIF%29::SNP::Pf3D7_06_v3::1342131::I104F
PF3D7_0709000::chloroquine+resistance+transporter+%28CRT%29::SNP::Pf3D7_07_v3::403624::K76Q
PF3D7_1009100::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_10_v3::373873::K452I
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::24492::R1043
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::24579::D1072E
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::24586::K1075E
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::26557::
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::26558::
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::26559::
PF3D7_1455800::LCCL+domain-containing+protein+%28CCp2%29::SNP::Pf3D7_14_v3::2285153::I14S
PF3D7_0622100::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_06_v3::899869::-832II
PF3D7_0632200::rifin+%28RIF%29::INDEL::Pf3D7_06_v3::1342113::N109-
PF3D7_0632200::rifin+%28RIF%29::INDEL::Pf3D7_06_v3::1342117::L108WL
PF3D7_0815800::vacuolar+sorting+protein+VPS9%2C+putative::INDEL::Pf3D7_08_v3::740847::-112I
PF3D7_1008000::inositol+polyphosphate+kinase%2C+putative+%28IPK1%29::INDEL::Pf3D7_10_v3::324382::KIYGDN1125-
PF3D7_1009600::protein+phosphatase%2C+putative::INDEL::Pf3D7_10_v3::387383::NMN137-
PF3D7_1341900::vacuolar+ATP+synthase+subunit+d%2C+putative::INDEL::Pf3D7_13_v3::1650247::
PF3D7_1423400::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::943231::-214NNDY
exon::noncoding RNA (PF3D7_1478900)::INDEL::Pf3D7_14_v3::3250128::-1033?
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4788259::"Stadelmann B, Rufener R, et al. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis. PLoS Negl Trop Dis. 2016;10(3):e0004535. doi:10.1371/journal.pntd.0004535"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC4486462::"Fong KY, Sandlin RD, et al. Identification of β-hematin inhibitors in the MMV Malaria Box. Int J Parasitol Drugs Drug Resist. 2015;5(3):84-91. doi:10.1016/j.ijpddr.2015.05.003"
|
BRD3444 |
COC1=CC=C(C=C1)NC(N2CCCCN3[C@@H]([C@H](C4=CC=C(C#CC5=CC=CC=C5)C=C4)[C@@H]3C2)CO)=O |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC5515376::"Kato N, Comer E, et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature. 2016;538(7625):344-349. doi:10.1038/nature19804"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC6805675::"Cowell AN, Winzeler EA Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;11():63. doi:10.1186/s13073-019-0673-3"
PMC6366043::"Nyamai DW, Tastan Bishop Ö Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J. 2019;18():34. doi:10.1186/s12936-019-2665-6"
PMC5561537::"Maetani M, Zoller J, et al. Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp3)–H Arylation. J Am Chem Soc. 2017;139(32):11300-11306. doi:10.1021/jacs.7b06994"
PMC5379905::"Gomes AR, Ravenhall M, et al. Genetic diversity of next generation antimalarial targets: A baseline for drug resistance surveillance programmes. Int J Parasitol Drugs Drug Resist. 2017;7(2):174-180. doi:10.1016/j.ijpddr.2017.03.001"
|
MMV019313 |
Cn1c2ccccc2c3c(c1=O)cc(s3)C(=O)NCCCN4CCCCCC4 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC5820002::"Gisselberg JE, Herrera Z, et al. Specific inhibition of the bifunctional farnesyl/geranylgeranyl diphosphate synthase in malaria parasites via a new small molecule binding site. Cell Chem Biol. 2017;25(2):185-193.e5. doi:10.1016/j.chembiol.2017.11.010"
|
MMV665882 |
OC(CNC1CCCCC1)Cn1c2ccc(I)cc2c2cc(I)ccc12 |
PF3D7_0322600::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_03_v3::948691::D106E
PF3D7_0401200::rifin+%28RIF%29::SNP::Pf3D7_04_v3::80058::T237
PF3D7_0401200::rifin+%28RIF%29::SNP::Pf3D7_04_v3::80059::E238Q
PF3D7_0401200::rifin+%28RIF%29::SNP::Pf3D7_04_v3::80066::N240T
PF3D7_0401200::rifin+%28RIF%29::SNP::Pf3D7_04_v3::80068::T241A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1448746::
PF3D7_1450000::serine%2Fthreonine+protein+kinase%2C+putative::SNP::Pf3D7_14_v3::2049502::
PF3D7_0613800::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_06_v3::566727::QMEGDNEMEGDNE197Q
PF3D7_1126100::autophagy-related+protein+7%2C+putative+%28ATG7%29::INDEL::Pf3D7_11_v3::1018581::
PF3D7_1352400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2087934::T181TG
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5853493::"Jung EH, Meyers DJ, et al. Novel Antifungal Compounds Discovered in Medicines for Malaria Venture’s Malaria Box. mSphere. 2018;3(2):e00537-17. doi:10.1128/mSphere.00537-17"
PMC5770543::"Subramanian G, Belekar MA, et al. Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules. mSphere. 2018;3(1):e00534-17. doi:10.1128/mSphere.00534-17"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
|
KAE609 |
ClC1=C(F)C=C2C(NC3=C2C[C@H](C)N[C@@]34C(CC5=C4C=C(Cl)C=C5)=O)=C1 |
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC6424564::"Istvan ES, Das S, et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife. 2019;8():e40529. doi:10.7554/eLife.40529"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC3050001::"Rottmann M, McNamara C, et al. Spiroindolones, a new and potent chemotype for the treatment of malaria. Science. 2010;329(5996):1175-1180. doi:10.1126/science.1193225"
PMC7198127::"Wockner LF, Hoffmann I, et al. Growth Rate of Plasmodium falciparum: Analysis of Parasite Growth Data from Malaria Volunteer Infection Studies. J Infect Dis. 2019;221(6):963-972. doi:10.1093/infdis/jiz557"
PMC6990122::"Depond M, Henry B, et al. Methods to Investigate the Deformability of RBC During Malaria. Front Physiol. 2020;10():1613. doi:10.3389/fphys.2019.01613"
PMC6941357::"Charman SA, Andreu A, et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J. 2020;19():1. doi:10.1186/s12936-019-3075-5"
PMC6882913::"Dangi P, Jain R, et al. Natural Product Inspired Novel Indole based Chiral Scaffold Kills Human Malaria Parasites via Ionic Imbalance Mediated Cell Death. Sci Rep. 2019;9():17785. doi:10.1038/s41598-019-54339-z"
PMC6888673::"Capela R, Moreira R, et al. An Overview of Drug Resistance in Protozoal Diseases. Int J Mol Sci. 2019;20(22):5748. doi:10.3390/ijms20225748"
PMC6843799::"Sun Z, Yang J, et al. Pharmacokinetics and Metabolite Profiling of Trepibutone in Rats Using Ultra-High Performance Liquid Chromatography Combined With Hybrid Quadrupole-Orbitrap and Triple Quadrupole Mass Spectrometers. Front Pharmacol. 2019;10():1266. doi:10.3389/fphar.2019.01266"
PMC6712708::"Ballard E, Wang CY, et al. A validation study of microscopy versus quantitative PCR for measuring Plasmodium falciparum parasitemia. Trop Med Health. 2019;47():49. doi:10.1186/s41182-019-0176-3"
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6658739::"Hanboonkunupakarn B, van der Pluijm RW, et al. Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother. 2019;63(8):e00060-19. doi:10.1128/AAC.00060-19"
PMC6667170::"Kennedy K, Cobbold SA, et al. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biol. 2019;17(7):e3000376. doi:10.1371/journal.pbio.3000376"
PMC6635429::"Gilson PR, Kumarasingha R, et al. A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4. Sci Rep. 2019;9():10292. doi:10.1038/s41598-019-46500-5"
PMC6591700::"Yahiya S, Rueda-Zubiaurre A, et al. The antimalarial screening landscape—looking beyond the asexual blood stage. Curr Opin Chem Biol. 2019;50():1-9. doi:10.1016/j.cbpa.2019.01.029"
PMC6859814::"Cowell AN, Winzeler EA The genomic architecture of antimalarial drug resistance. Brief Funct Genomics. 2019;18(5):314-328. doi:10.1093/bfgp/elz008"
PMC6431062::"Tse EG, Korsik M, et al. The past, present and future of anti-malarial medicines. Malar J. 2019;18():93. doi:10.1186/s12936-019-2724-z"
PMC6431002::"Hooft van Huijsduijnen R, Wells T, et al. Two successful decades of Swiss collaborations to develop new anti-malarials. Malar J. 2019;18():94. doi:10.1186/s12936-019-2728-8"
PMC6403410::"van Schalkwyk DA, Blasco B, et al. Plasmodium knowlesi exhibits distinct in vitro drug susceptibility profiles from those of Plasmodium falciparum. Int J Parasitol Drugs Drug Resist. 2019;9():93-99. doi:10.1016/j.ijpddr.2019.02.004"
PMC6593759::"Liu B, Blanch AJ, et al. Multimodal analysis of Plasmodium knowlesi‐infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects. Cell Microbiol. 2019;21(5):e13005. doi:10.1111/cmi.13005"
PMC5971608::"Dennis AS, Lehane AM, et al. Cell Swelling Induced by the Antimalarial KAE609 (Cipargamin) and Other PfATP4-Associated Antimalarials. Antimicrob Agents Chemother. 2018;62(6):e00087-18. doi:10.1128/AAC.00087-18"
PMC5995868::"Dennis AS, Rosling JE, et al. Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis. Sci Rep. 2018;8():8795. doi:10.1038/s41598-018-26819-1"
PMID31385706::"Ashton TD, Devine SM, et al. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials.. J Med Chem. 2019;62(23):10526-10562. doi:3"
PMC4997877::"Chavchich M, Van Breda K, et al. The Spiroindolone KAE609 Does Not Induce Dormant Ring Stages in Plasmodium falciparum Parasites. Antimicrob Agents Chemother. 2016;60(9):5167-5174. doi:10.1128/AAC.02838-15"
PMC4904242::"Goldgof GM, Durrant JD, et al. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor. Sci Rep. 2016;6():27806. doi:10.1038/srep27806"
PMID26921387::"Huskey SE, Zhu CQ, et al. KAE609 (Cipargamin), a New Spiroindolone Agent for the Treatment of Malaria: Evaluation of the Absorption, Distribution, Metabolism, and Excretion of a Single Oral 300-mg Dose of [14C]KAE609 in Healthy Male Subjects.. Drug Metab Dispos. 2016;44(5):672-82. doi:3"
PMID26921386::"Huskey SE, Zhu CQ, et al. Identification of Three Novel Ring Expansion Metabolites of KAE609, a New Spiroindolone Agent for the Treatment of Malaria, in Rats, Dogs, and Humans.. Drug Metab Dispos. 2016;44(5):653-64. doi:3"
PMC6093624::"Radke JB, Burrows JN, et al. Evaluation of current and emerging anti-malarial medicines for inhibition of Toxoplasma gondii growth in vitro. ACS Infect Dis. 2018;4(8):1264-1274. doi:10.1021/acsinfecdis.8b00113"
PMC4839739::"Lee AH, Fidock DA Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites. PLoS One. 2016;11(4):e0154166. doi:10.1371/journal.pone.0154166"
PMC4432206::"Stein DS, Jain JP, et al. Open-Label, Single-Dose, Parallel-Group Study in Healthy Volunteers To Determine the Drug-Drug Interaction Potential between KAE609 (Cipargamin) and Piperaquine. Antimicrob Agents Chemother. 2015;59(6):3493-3500. doi:10.1128/AAC.00340-15"
PMC4881962::"Das S, Bhatanagar S, et al. Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum . PLoS Pathog. 2016;12(5):e1005647. doi:10.1371/journal.ppat.1005647"
PMC4676544::"Zhang R, Suwanarusk R, et al. A Basis for Rapid Clearance of Circulating Ring-Stage Malaria Parasites by the Spiroindolone KAE609. J Infect Dis. 2015;213(1):100-104. doi:10.1093/infdis/jiv358"
PMC5732164::"Dechering KJ, Duerr HP, et al. Modelling mosquito infection at natural parasite densities identifies drugs targeting EF2, PI4K or ATP4 as key candidates for interrupting malaria transmission. Sci Rep. 2017;7():17680. doi:10.1038/s41598-017-16671-0"
PMC4935891::"Winterberg M, Kirk K A high-sensitivity HPLC assay for measuring intracellular Na+ and K+ and its application to Plasmodium falciparum infected erythrocytes. Sci Rep. 2016;6():29241. doi:10.1038/srep29241"
PMC6461493::"Bhatnagar S, Nicklas S, et al. Diverse chemical compounds target Plasmodium falciparum plasma membrane lipid homeostasis. ACS Infect Dis. 2019;5(4):550-558. doi:10.1021/acsinfecdis.8b00277"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMID26367505::"Takada H, Kumagai N, et al. Stereoselective Total Synthesis of KAE609 via Direct Catalytic Asymmetric Alkynylation to Ketimine.. Org Lett. 2015;17(19):4762-5. doi:3"
PMC4187895::"Leong FJ, Li R, et al. A First-in-Human Randomized, Double-Blind, Placebo-Controlled, Single- and Multiple-Ascending Oral Dose Study of Novel Antimalarial Spiroindolone KAE609 (Cipargamin) To Assess Its Safety, Tolerability, and Pharmacokinetics in Healthy Adult Volunteers. Antimicrob Agents Chemother. 2014;58(10):6209-6214. doi:10.1128/AAC.03393-14"
PMC4179257::"Leong J, Li R, et al. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel spiroindolone KAE609, to assess the safety, tolerability and pharmacokinetics in healthy adult volunteers. Malar J. 2014;13(Suppl 1):O37. doi:10.1186/1475-2875-13-S1-O37"
|
MMV1319550 |
CN(CCc1ccc(c(c1)OC)OC)c2c3ccc(cc3nc4c2cc(cc4)OC)Cl |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV000442 |
CC(C)(C)c1ccc2OCN(Cc3ccc(Cl)cc3)Cc2c1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
|
MMV1068987 |
CC(Sc1nc2ccccc2nc1C)C(=O)c1c[nH]c2ccccc12 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV673482 |
O=C(NC1=CC=CC=C1F)N(CC2)CCC2(CN(C(C)=O)[C@H]3CO)C4=C3NC5=C4C=CC(OC)=C5 |
PF3D7_0203000::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_02_v3::142227::V1780I
PF3D7_0509800::phosphatidylinositol+4-kinase::SNP::Pf3D7_05_v3::414333::Y1356N
PF3D7_0509800::phosphatidylinositol+4-kinase::SNP::Pf3D7_05_v3::414617::L1418F
PF3D7_0619300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_06_v3::809222::N1777K
PF3D7_0817300::asparagine-rich+antigen::INDEL::Pf3D7_08_v3::788252::GCDNINEGCDNINEGCGNINEGCGNINEG427G
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV665971 |
CCOC(=O)C1=C(C)N=c2s\c(=C/c3cc(Cl)ccc3O)c(=O)n2C1c1ccc(OC)cc1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6938011::"de Souza GE, Bueno RV, et al. Antiplasmodial profile of selected compounds from Malaria Box: in vitro evaluation, speed of action and drug combination studies. Malar J. 2019;18():447. doi:10.1186/s12936-019-3069-3"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC4898484::"Choi JY, Kumar V, et al. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening. Mol Microbiol. 2015;99(6):999-1014. doi:10.1111/mmi.13280"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
|
MMV027496 |
COC1=C(OCCN(C)C)C=CC(=C1)C1=NC(=C(N1)C1=CC=CC=C1)C1=CC=CC=C1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
CEP-37440 |
OCCN1CCN(CC1)[C@H]1CCCc2c(C1)ccc(c2OC)Nc1ncc(c(n1)Nc1ccccc1C(=O)NC)Cl |
|
PMC7061741::"Wang D, He J, et al. The HIPPO pathway in gynecological malignancies. Am J Cancer Res. 2020;10(2):610-629. doi:"
PMC6462037::"Brodin BA, Wennerberg K, et al. Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer. 2019;120(4):435-443. doi:10.1038/s41416-018-0359-4"
PMC6198244::"Fan J, Fong T, et al. The efficacy and safety of ALK inhibitors in the treatment of ALK‐positive non‐small cell lung cancer: A network meta‐analysis. Cancer Med. 2018;7(10):4993-5005. doi:10.1002/cam4.1768"
PMC6045602::"Li J, Huang Y, et al. Structure and energy based quantitative missense variant effect analysis provides insights into drug resistance mechanisms of anaplastic lymphoma kinase mutations. Sci Rep. 2018;8():10664. doi:10.1038/s41598-018-28752-9"
PMC5952030::"Ziogas DC, Tsiara A, et al. Treating ALK-positive non-small cell lung cancer. Ann Transl Med. 2018;6(8):141. doi:10.21037/atm.2017.11.34"
PMC5834792::Katayama R. Drug resistance in anaplastic lymphoma kinase‐rearranged lung cancer. Cancer Sci. 2018;109(3):572-580. doi:10.1111/cas.13504
PMC5739633::"Yue Y, Song M, et al. Gene function analysis and underlying mechanism of esophagus cancer based on microarray gene expression profiling. Oncotarget. 2017;8(62):105222-105237. doi:10.18632/oncotarget.22160"
PMC5909815::"Kuenzi BM, Remsing Rix LL, et al. Polypharmacology-based ceritinib repurposing using integrated functional proteomics. Nat Chem Biol. 2017;13(12):1222-1231. doi:10.1038/nchembio.2489"
PMC5865874::"Shi Z, Zhou H, et al. Exploring the key genes and pathways of osteosarcoma with pulmonary metastasis using a gene expression microarray. Mol Med Rep. 2017;16(5):7423-7431. doi:10.3892/mmr.2017.7577"
PMC5354929::"Borriello A, Caldarelli I, et al. Tyrosine kinase inhibitors and mesenchymal stromal cells: effects on self-renewal, commitment and functions. Oncotarget. 2016;8(3):5540-5565. doi:10.18632/oncotarget.12649"
PMC6310340::"Bennati C, Paglialunga L, et al. Targeting EGFR and ALK in NSCLC: current evidence and future perspective. Lung Cancer Manag. 2016;5(2):79-90. doi:10.2217/lmt-2016-0005"
PMC5122466::"Haake SM, Li J, et al. Tyrosine Kinase Signaling in Clear Cell and Papillary Renal Cell Carcinoma Revealed by Mass Spectrometry-Based Phosphotyrosine Proteomics. Clin Cancer Res. 2016;22(22):5605-5616. doi:10.1158/1078-0432.CCR-15-1673"
PMC4806466::"Salem I, Alsalahi M, et al. The effects of CEP-37440, an inhibitor of focal adhesion kinase, in vitro and in vivo on inflammatory breast cancer cells. Breast Cancer Res. 2016;18():37. doi:10.1186/s13058-016-0694-4"
PMC4863448::"Perera S, Piwnica-Worms D, et al. Synthesis of a [18F]-labeled ceritinib analogue for positron emission tomography of anaplastic lymphoma kinase, a receptor tyrosine kinase, in lung cancer. J Labelled Comp Radiopharm. 2016;59(3):103-108. doi:10.1002/jlcr.3373"
PMC4699265::"Sullivan I, Planchard D ALK inhibitors in non-small cell lung cancer: the latest evidence and developments. Ther Adv Med Oncol. 2016;8(1):32-47. doi:10.1177/1758834015617355"
PMC4847817::"Zhao Z, Verma V, et al. Anaplastic lymphoma kinase: Role in cancer and therapy perspective. Cancer Biol Ther. 2015;16(12):1691-1701. doi:10.1080/15384047.2015.1095407"
PMC4651821::"Moen I, Gebre M, et al. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis. 2015;32(8):799-817. doi:10.1007/s10585-015-9752-z"
PMC4599072::"Guo L, Zhang H, et al. Crizotinib as a personalized alternative for targeted anaplastic lymphoma kinase rearrangement in previously treated patients with non-small-cell lung cancer. Drug Des Devel Ther. 2015;9():5491-5497. doi:10.2147/DDDT.S91988"
PMC4543855::"Maione P, Sacco PC, et al. Overcoming resistance to targeted therapies in NSCLC: current approaches and clinical application. Ther Adv Med Oncol. 2015;7(5):263-273. doi:10.1177/1758834015595048"
PMC4543853::"Liao BC, Lin CC, et al. Treating patients with ALK-positive non-small cell lung cancer: latest evidence and management strategy. Ther Adv Med Oncol. 2015;7(5):274-290. doi:10.1177/1758834015590593"
PMID27527804::"Ott GR, Cheng M, et al. Discovery of Clinical Candidate CEP-37440, a Selective Inhibitor of Focal Adhesion Kinase (FAK) and Anaplastic Lymphoma Kinase (ALK).. J Med Chem. 2016;59(16):7478-96. doi:3"
PMID31109278::"Sharda S, Khandelwal R, et al. A Computer - Aided Drug Designing for Pharmacological Inhibition of Mutant ALK for the Treatment of Non-small Cell Lung Cancer.. Curr Top Med Chem. 2019;19(13):1129-1144. doi:3"
PMC4491683::"Isozaki H, Takigawa N, et al. Mechanisms of Acquired Resistance to ALK Inhibitors and the Rationale for Treating ALK-positive Lung Cancer. Cancers (Basel). 2015;7(2):763-783. doi:10.3390/cancers7020763"
PMC4215402::"Awad MM, Shaw AT ALK Inhibitors in Non–Small Cell Lung Cancer: Crizotinib and Beyond. Clin Adv Hematol Oncol. 2014;12(7):429-439. doi:"
PMC4349797::"Iragavarapu C, Mustafa M, et al. Novel ALK inhibitors in clinical use and development. J Hematol Oncol. 2015;8():17. doi:10.1186/s13045-015-0122-8"
PMC4561238::MANO H. The EML4-ALK oncogene: targeting an essential growth driver in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(5):193-201. doi:10.2183/pjab.91.193
PMC3949762::"Iwama E, Okamoto I, et al. Development of anaplastic lymphoma kinase (ALK) inhibitors and molecular diagnosis in ALK rearrangement-positive lung cancer. Onco Targets Ther. 2014;7():375-385. doi:10.2147/OTT.S38868"
PMC4369855::"Puig de la Bellacasa R, Karachaliou N, et al. ALK and ROS1 as a joint target for the treatment of lung cancer: a review. Transl Lung Cancer Res. 2013;2(2):72-86. doi:10.3978/j.issn.2218-6751.2013.03.1"
PMC3477548::"Sasaki T, Jänne PA New Strategies for Treatment of ALK Rearranged Non-Small Cell Lung Cancers. Clin Cancer Res. 2011;17(23):7213-7218. doi:10.1158/1078-0432.CCR-11-1404"
|
ZSTK-474 |
FC(c1nc2c(n1c1nc(nc(n1)N1CCOCC1)N1CCOCC1)cccc2)F |
|
PMC6358886::"Sanchez VE, Nichols C, et al. Targeting PI3K Signaling in Acute Lymphoblastic Leukemia. Int J Mol Sci. 2019;20(2):412. doi:10.3390/ijms20020412"
PMC5813176::"Yaglom JA, Wang Y, et al. Cancer cell responses to Hsp70 inhibitor JG-98: Comparison with Hsp90 inhibitors and finding synergistic drug combinations. Sci Rep. 2018;8():3010. doi:10.1038/s41598-017-14900-0"
PMC5821189::"Schofield HK, Zeller J, et al. Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight. 2018;3(2):e97422. doi:10.1172/jci.insight.97422"
PMC4742099::"Lee JS, Tang SS, et al. MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma. Oncotarget. 2015;6(34):35202-35217. doi:10.18632/oncotarget.6051"
PMC4434457::"Yang H, Medeiros PF, et al. Discovery of a Potent Class of PI3Kα Inhibitors with Unique Binding Mode via Encoded Library Technology (ELT). ACS Med Chem Lett. 2015;6(5):531-536. doi:10.1021/acsmedchemlett.5b00025"
PMC4496363::"Lonetti A, Cappellini A, et al. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget. 2015;6(12):10399-10414. doi:10.18632/oncotarget.3295"
PMC3711139::"Welker ME, Kulik G Recent Syntheses of PI3K/Akt/mTOR Signaling Pathway Inhibitors. Bioorg Med Chem. 2013;21(14):4063-4091. doi:10.1016/j.bmc.2013.04.083"
PMC3488272::"Bottsford-Miller JN, Coleman RL, et al. Resistance and Escape From Antiangiogenesis Therapy: Clinical Implications and Future Strategies. J Clin Oncol. 2012;30(32):4026-4034. doi:10.1200/JCO.2012.41.9242"
PMC3474370::"Zheng Z, Amran SI, et al. Definition of the binding mode of a new class of phosphoinositide 3-kinase α-selective inhibitors using in vitro mutagenesis of non-conserved amino acids and kinetic analysis. Biochem J. 2012;444(3):529-535. doi:10.1042/BJ20120499"
PMC2710522::"Samaga R, Saez-Rodriguez J, et al. The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-Throughput Data. PLoS Comput Biol. 2009;5(8):e1000438. doi:10.1371/journal.pcbi.1000438"
PMID31904116::"Evangelisti C, Chiarini F, et al. Targeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-cell acute lymphoblastic leukemia.. J Cell Physiol. 2020;235(6):5413-5428. doi:3"
PMC4253435::"Jokinen E, Laurila N, et al. Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features. Oncotarget. 2014;5(19):9295-9307. doi:10.18632/oncotarget.2424"
PMC4695048::"Laugier F, Finet-Benyair A, et al. RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanoma. Oncotarget. 2015;6(29):28120-28131. doi:10.18632/oncotarget.4866"
PMC6100378::"Nelson RA Jr, Schronce T, et al. Synthesis and PI 3-Kinase Inhibition Activity of Some Novel 2,4,6-Trisubstituted 1,3,5-Triazines. Molecules. 2018;23(7):1628. doi:10.3390/molecules23071628"
PMC6825320::"Nath A, Lau EY, et al. Discovering long noncoding RNA predictors of anticancer drug sensitivity beyond protein-coding genes. Proc Natl Acad Sci U S A. 2019;116(44):22020-22029. doi:10.1073/pnas.1909998116"
PMC6217669::"Chang R, Tosi U, et al. PDTM-26. DUAL THERAPY WITH PI3K INHIBITOR ZSTK-474 AND MEK INHIBITOR TRAMETINIB VIA CONVECTION-ENHANCED DELIVERY IN A GENETICALLY-ENGINEERED MOUSE MODEL OF DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro Oncol. 2018;20(Suppl 6):vi209. doi:10.1093/neuonc/noy148.867"
PMC4585899::"Mott BT, Eastman RT, et al. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Sci Rep. 2015;5():13891. doi:10.1038/srep13891"
PMC3764099::"Yancey D, Nelson KC, et al. BAD Dephosphorylation and Decreased Expression of MCL-1 Induce Rapid Apoptosis in Prostate Cancer Cells. PLoS One. 2013;8(9):e74561. doi:10.1371/journal.pone.0074561"
PMC5075755::"Lonetti A, Cappellini A, et al. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol. 2016;9():114. doi:10.1186/s13045-016-0344-4"
PMC4496363::"Lonetti A, Cappellini A, et al. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget. 2015;6(12):10399-10414. doi:10.18632/oncotarget.3295"
PMC4829101::"Garçon F, Okkenhaug K PI3Kδ promotes CD4+ T-cell interactions with antigen-presenting cells by increasing LFA-1 binding to ICAM-1. Immunol Cell Biol. 2016;94(5):486-495. doi:10.1038/icb.2016.1"
PMC6100461::"Wright EW, Nelson RA Jr, et al. Synthesis and PI3 Kinase Inhibition Activity of Some Novel Trisubstituted Morpholinopyrimidines. Molecules. 2018;23(7):1675. doi:10.3390/molecules23071675"
PMC6175892::"Han HW, Hahn S, et al. LINCS L1000 dataset-based repositioning of CGP-60474 as a highly potent anti-endotoxemic agent. Sci Rep. 2018;8():14969. doi:10.1038/s41598-018-33039-0"
PMC4661225::"Browning MJ, Chandra A, et al. Cowden’s syndrome with immunodeficiency. J Med Genet. 2015;52(12):856-859. doi:10.1136/jmedgenet-2015-103266"
PMC4585899::"Mott BT, Eastman RT, et al. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Sci Rep. 2015;5():13891. doi:10.1038/srep13891"
PMC3684198::" 18th Congress of the European Hematology Association, Stockholm, Sweden, June 13–16, 2013. Haematologica. 2013;98(Suppl 1):1-768. doi:"
|
GNF-Pf-4216 |
CCN(CC)CCCC(C)NC1=CC=NC2=CC(Cl)=CC=C12 |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
|
GNF-Pf-5129 |
COC1=CC=C(C=C1)C2SC3=CC=CC=C3N=C4C5=CC=CC=C5C(O)=C24 |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
"2,7-dibromoCryptolepine hydrochloride (analog)" |
[Cl-].C[n+]1c2C=CC(Br)Cc2cc3[n-]c4ccc(Br)cc4c13 |
|
PMC3777419::"Kumar EV, Etukala JR, et al. Indolo[3,2-b]quinolines: Synthesis, Biological Evaluation and Structure Activity-Relationships. Mini Rev Med Chem. 2008;8(6):538-554. doi:"
|
GNF-pf-5668 |
CCCOC(=O)C1=C(C)NC2=C(C1C3=CC=CC=C3F)C(=O)CC(C2)C4=CC=C(OC)C(OC)=C4 |
PF3D7_0827000::ATP-dependent+RNA+helicase+DBP10%2C+putative+%28DBP10%29::SNP::Pf3D7_08_v3::1169636::K605E
PF3D7_0827000::ATP-dependent+RNA+helicase+DBP10%2C+putative+%28DBP10%29::SNP::Pf3D7_08_v3::1169636::K605E
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1176638::V850A
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1176656::A844V
PF3D7_0523000::multidrug+resistance+protein+%28MDR1%29::SNP::Pf3D7_05_v3::958758::Y290F
PF3D7_0605800::DNA+repair-like+protein%2C+putative::SNP::Pf3D7_06_v3::242009::G838V
PF3D7_0925800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::1034897::I528T
PF3D7_0925800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::1034912::T533I
PF3D7_0925800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::1034927::I538T
PF3D7_1303700::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::181401::NA
|
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
|
NEU-1931 |
CN1CCN(CC1)S(=O)(=O)C1=CC=CC(=C1)C1=CC=C2C(NC3=CC=C(OCC4=CC=CC(F)=C4)C(Cl)=C3)=CC=NC2=C1 |
|
PMC7225685::"Heuchert B, Braun U, et al. Taxonomic monograph of the genus Taeniolella s. lat. (Ascomycota). Fungal Syst Evol. 2018;2():69-261. doi:10.3114/fuse.2018.02.06"
PMC7154044::"Varnava AI, Roberts SP, et al. The wild bees (Hymenoptera, Apoidea) of the island of Cyprus. Zookeys. 2020;924():1-114. doi:10.3897/zookeys.924.38328"
PMC7143374::Ontario Health (Quality) WangMyraMZhangYuanYShafiqueAmmaraAWalterMelissaM. Gene Expression Profiling Tests for Early-Stage Invasive Breast Cancer: A Health Technology Assessment. Ont Health Technol Assess Ser. 2020;20(10):1-234. doi:
PMC7119399:: Index of Subjects. Am J Pathol. 2007;170(6):2183-2195. doi:10.1016/S0002-9440(10)61424-1
PMC7120886::Kerkhof PL. Engels-Nederlands. Woordenboek geneeskunde en biomedische wetenschappen E-N/N-E. 2016;():13-246. doi:10.1007/978-90-368-1615-1_1
PMC7120277::"Vignais PV, Vignais PM Challenges for Experimentation on Living Beings at the Dawn of the 21st Century. Discovering Life, Manufacturing Life. 2010;():241-345. doi:10.1007/978-90-481-3767-1_5"
PMC7113323::"Bouchard P, Bousquet Y Additions and corrections to “Family-group names in Coleoptera (Insecta)”. Zookeys. 2020;922():65-139. doi:10.3897/zookeys.922.46367"
PMC7122603::Vogel HG. Cardiovascular Activity. Drug Discovery and Evaluation. 2008;():47-391. doi:10.1007/978-3-540-70995-4_2
PMC7103147:: Abstracts: 31stEuropean Congress of Pathology. Virchows Arch. 2019;475(Suppl 1):1-436. doi:10.1007/s00428-019-02631-8
PMC7203530::"Haľková B, Tuf IH, et al. Subterranean biodiversity and depth distribution of myriapods in forested scree slopes of Central Europe. Zookeys. 2020;930():117-137. doi:10.3897/zookeys.930.48914"
PMC7165196::"McClelland DH, Nee M, et al. New names and status for Pacific spiny species of Solanum (Solanaceae, subgenus Leptostemonum Bitter; the Leptostemonum Clade). PhytoKeys. 2020;145():1-36. doi:10.3897/phytokeys.145.48531"
PMC7153165::Petersen C. Biologie. Naturwissenschaften im Fokus V. 2017;():1-145. doi:10.1007/978-3-658-15304-5_1
PMC7119373:: Index of Authors. Am J Pathol. 2007;170(6):2196-2215. doi:10.1016/S0002-9440(10)61425-3
PMC7085857::"Sandoval-Denis M, Lombard L, et al. Back to the roots: a reappraisal of Neocosmospora. Persoonia. 2019;43():90-185. doi:10.3767/persoonia.2019.43.04"
PMC7050605::"Giolito MV, Camacho CM, et al. Antitumor activity of new chemical compounds in triple negative mammary adenocarcinoma models. Future Sci OA. 2020;6(3):FSOA442. doi:10.2144/fsoa-2019-0057"
PMC6981595::"Rosa J, Deuermeier J, et al. Control of Eu Oxidation State in Y2O3−xSx:Eu Thin-Film Phosphors Prepared by Atomic Layer Deposition: A Structural and Photoluminescence Study. Materials (Basel). 2019;13(1):93. doi:10.3390/ma13010093"
PMC6911097::"Barrière DA, Magalhães R, et al. The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nat Commun. 2019;10():5699. doi:10.1038/s41467-019-13575-7"
PMC6904721::"Kielbik P, Kaszewski J, et al. Preliminary Studies on Biodegradable Zinc Oxide Nanoparticles Doped with Fe as a Potential Form of Iron Delivery to the Living Organism. Nanoscale Res Lett. 2019;14():373. doi:10.1186/s11671-019-3217-2"
PMC6775665::"Moi L, Braaten T, et al. Differential expression of the miR-17-92 cluster and miR-17 family in breast cancer according to tumor type; results from the Norwegian Women and Cancer (NOWAC) study. J Transl Med. 2019;17():334. doi:10.1186/s12967-019-2086-x"
PMC6742411::"Fercoq F, Remion E, et al. IL-4 receptor dependent expansion of lung CD169+ macrophages in microfilaria-driven inflammation. PLoS Negl Trop Dis. 2019;13(8):e0007691. doi:10.1371/journal.pntd.0007691"
PMID31513768::Neu J. Fueling the Optimal Microbiome: Interventions for Severe Acute Malnutrition.. Cell Host Microbe. 2019;26(3):307-308. doi:3
PMID28825512::"Montoya-Williams D, Lemas DJ, et al. What Are Optimal Cesarean Section Rates in the U.S. and How Do We Get There? A Review of Evidence-Based Recommendations and Interventions.. J Womens Health (Larchmt). 2017;26(12):1285-1291. doi:3"
PMC6223661::"Yang WH, Heithoff DM, et al. Accelerated aging and clearance of host anti-inflammatory enzymes by discrete pathogens fuels sepsis. Cell Host Microbe. 2018;24(4):500-513.e5. doi:10.1016/j.chom.2018.09.011"
PMC6538820::"Castelhano J, Duarte IC, et al. The role of the insula in intuitive expert bug detection in computer code: an fMRI study. Brain Imaging Behav. 2018;13(3):623-637. doi:10.1007/s11682-018-9885-1"
PMC5966761::"Sundararaj K, Rodgers JI, et al. Neuraminidase activity mediates IL-6 production by activated lupus-prone mesangial cells. Am J Physiol Renal Physiol. 2017;314(4):F630-F642. doi:10.1152/ajprenal.00421.2017"
PMC5126515::"Zheng B, Ren D, et al. A new species of Lasiosmylus from the Early Cretaceous, China clarifies its genus-group placement in Ithonidae (Neuroptera). Zookeys. 2016;(636):41-50. doi:10.3897/zookeys.636.10103"
PMC6909717::"Sealy-Jefferson S, Roseland ME, et al. Rural–Urban Residence and Stage at Breast Cancer Diagnosis Among Postmenopausal Women: The Women's Health Initiative. J Womens Health (Larchmt). 2019;28(2):276-283. doi:10.1089/jwh.2017.6884"
PMC4891476::"Roloff GW, Yang Z, et al. Colon cancer metastasis to the thyroid gland: report of a case with unique molecular profile. Clin Case Rep. 2016;4(6):549-553. doi:10.1002/ccr3.497"
PMC7054004::"Strausfeld NJ, Wolff GH, et al. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife. 2020;9():e52411. doi:10.7554/eLife.52411"
PMC5330497::"Hyžný M, Zorn I A catalogue of the type and figured fossil decapod crustaceans in the collections of the Geological Survey of Austria in Vienna. Jahrb Geol Bundesanst (1945). 2016;156(1-4):127-177. doi:"
PMID20671058::"Matsuoka H, Niimi A, et al. Inflammatory subtypes in cough-variant asthma: association with maintenance doses of inhaled corticosteroids.. Chest. 2010;138(6):1418-25. doi:3"
PMC6290049::"Moulin N. A revision of Syngalepsus Beier, with the description of two new species from the Central African Republic and Malawi (Mantodea, Tarachodidae). Zookeys. 2018;(802):121-143. doi:10.3897/zookeys.802.26622"
PMC6928964::"Yaghoubi A, Khazaei M, et al. Bacteriotherapy in Breast Cancer. Int J Mol Sci. 2019;20(23):5880. doi:10.3390/ijms20235880"
PMC5882055::"Lana S, Ganazzoli C, et al. Bilateral surgical damage of the central tegmental tract resulting in bilateral hypertrophic olivary degeneration: An MRI case report. Neuroradiol J. 2017;31(2):182-185. doi:10.1177/1971400917714804"
PMC4077415::"Wolf J, Świerblewska E, et al. Theophylline Therapy for Cheyne-Stokes Respiration During Sleep in a 41-Year-Old Man With Refractory Arterial Hypertension. Chest. 2014;146(1):e8-e10. doi:10.1378/chest.13-2897"
PMC6425324::"Döllinger M, Wendler O, et al. Juvenile Ovine Ex Vivo Larynges: Phonatory, Histologic, and Micro CT Based Anatomic Analyses. Biomed Res Int. 2019;2019():6932047. doi:10.1155/2019/6932047"
PMC6038820::"Versace F, Engelmann JM, et al. Brain responses to erotic and other emotional stimuli in breast cancer survivors with and without distress about low sexual desire: A preliminary fMRI study. Brain Imaging Behav. 2013;7(4):533-542. doi:10.1007/s11682-013-9252-1"
PMC5455258::"Treble-Barna A, Wade SL, et al. Influence of Dopamine-Related Genes on Neurobehavioral Recovery after Traumatic Brain Injury during Early Childhood. J Neurotrauma. 2017;34(11):1919-1931. doi:10.1089/neu.2016.4840"
PMC5600490::"Qian XL, Wen HY, et al. Assessment of dual-probe Her-2 fluorescent in situ hybridization in breast cancer by the 2013 ASCO/CAP guidelines produces more equivocal results than that by the 2007 ASCO/CAP guidelines. Breast Cancer Res Treat. 2016;159(1):31-39. doi:10.1007/s10549-016-3917-6"
PMC5192524::Flemming HC. EPS—Then and Now. Microorganisms. 2016;4(4):41. doi:10.3390/microorganisms4040041
PMID20951962::"Tsai B, Inoue T A virus takes an ""L"" turn to find its receptor.. Cell Host Microbe. 2010;8(4):301-2. doi:3"
|
MMV665794 |
FC(F)(F)C1=CC(NC2=C(NC3=CC(=CC=C3)C(F)(F)F)N=C3C=CC=CC3=N2)=CC=C1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6119338::"Douglas RG, Reinig M, et al. Screening for potential prophylactics targeting sporozoite motility through the skin. Malar J. 2018;17():319. doi:10.1186/s12936-018-2469-0"
PMC4788259::"Stadelmann B, Rufener R, et al. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis. PLoS Negl Trop Dis. 2016;10(3):e0004535. doi:10.1371/journal.pntd.0004535"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
PMC3886923::"Ingram-Sieber K, Cowan N, et al. Orally Active Antischistosomal Early Leads Identified from the Open Access Malaria Box. PLoS Negl Trop Dis. 2014;8(1):e2610. doi:10.1371/journal.pntd.0002610"
|
MMV665824 |
|
|
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5118696::"Dickerman BK, Elsworth B, et al. Identification of inhibitors that dually target the new permeability pathway and dihydroorotate dehydrogenase in the blood stage of Plasmodium falciparum. Sci Rep. 2016;6():37502. doi:10.1038/srep37502"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
GNF179 |
Clc1ccc(Nc2n3c(C(C)(N(C(CN)=O)CC3)C)nc2c4ccc(F)cc4)cc1 |
PF3D7_0100800::rifin+%28RIF%29::SNP::Pf3D7_01_v3::59830::c.54+5C>T
PF3D7_0100800::rifin+%28RIF%29::SNP::Pf3D7_01_v3::59836::c.54+11G>A
PF3D7_0100800::rifin+%28RIF%29::SNP::Pf3D7_01_v3::59838::c.54+13G>T
PF3D7_0413200::rifin+%28RIF%29::SNP::Pf3D7_04_v3::603256::p.Leu347Leu/c.1041A>G
PF3D7_0425700::rifin+%28RIF%29::SNP::Pf3D7_04_v3::1153173::p.Lys102Lys/c.306A>G
PF3D7_0600600::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+exon2+%28VAR%29::SNP::Pf3D7_06_v3::30971::c.73-103C>A
PF3D7_1300500::rifin+%28RIF%29::SNP::Pf3D7_13_v3::50735::c.54+20G>T
PF3D7_1373100::rifin+%28RIF%29::SNP::Pf3D7_13_v3::2872960::c.54+75A>T
PF3D7_1373100::rifin+%28RIF%29::SNP::Pf3D7_13_v3::2872964::c.54+71A>C
PF3D7_1373100::rifin+%28RIF%29::SNP::Pf3D7_13_v3::2872965::c.54+70C>T
PF3D7_0207100::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_02_v3::287215::c.5173+26_5173+27insAT
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::INDEL::Pf3D7_10_v3::1450208::p.Glu272fs/c.813delA
PF3D7_1222600::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_12_v3::911625::p.Met1476fs/c.4426_4427delAT
PF3D7_1342900::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_13_v3::1686282::p.Asn2562dup/c.7685_7687dupATA
PF3D7_1342900::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_13_v3::1686291::p.Gly2560delinsAspAsnSer/c.7678_7679insATAATA
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::925601::p.Glu834Lys/c.2500G>A
PF3D7_0809100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::465262::c.5077-52C>A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1448953::p.Gly559Arg/c.1675G>A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1450443::p.Cys193*/c.579C>A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1450692::p.Asp165Asn/c.493G>A
PF3D7_1366300::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2641089::p.Tyr3425fs/c.10275_10276delTG
PF3D7_1366300::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2641092::p.Gly3416fs/c.10246_10273delGGTGATGATCATTATGGTGATGATCATT
PF3D7_1475400::cysteine+repeat+modular+protein+4+%28CRMP4%29::INDEL::Pf3D7_14_v3::3100302::p.Glu1493_Glu1494insGln/c.4479_4480insCAA
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1450264::p.Leu253*/c.758T>A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1450650::c.533+2T>C
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1451483::c.163+1G>A
PF3D7_1208400::amino+acid+transporter%2C+putative::SNP::Pf3D7_12_v3::393639::p.Leu903*/c.2708T>A
PF3D7_1321500.1::3%27%2C5%27-cyclic+nucleotide+phosphodiesterase%2C+putative+%28PDEbeta%29::SNP::Pf3D7_13_v3::892658::p.Thr615Ile/c.1844C>T
PF3D7_0111000::kinesin-8%2C+putative::INDEL::Pf3D7_01_v3::422515::c.4609-24_4609-20delATTTT
PF3D7_0420300::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_04_v3::925216::p.Asn2418dup/c.7254_7256dupTAA
PF3D7_0612200::leucine-rich+repeat+protein+%28LRR6%29::INDEL::Pf3D7_06_v3::518179::p.Asp453_Glu456del/c.1358_1369delATGAAAATGAAG
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::923216::p.Met81Ile/c.243G>A
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::925589::p.Leu830Val/c.2488T>G
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::926422::p.Ser1076Ile/c.3227G>T
PF3D7_1106500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_11_v3::274069::p.Glu162Lys/c.484G>A
PF3D7_0305500::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_03_v3::262545::p.Asn3580dup/c.10739_10741dupATA
PF3D7_1330300::DnaJ+protein%2C+putative::INDEL::Pf3D7_13_v3::1276625::c.736+145_736+146insATATGTATGTATGTAT
PF3D7_1459200::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::2429016::p.Val359fs/c.1075dupG
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::925566::p.Pro822Leu/c.2465C>T
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::926422::p.Ser1076Ile/c.3227G>T
PF3D7_0400300::rifin+%28RIF%29::SNP::Pf3D7_04_v3::42755::p.Leu130Leu/c.390A>G
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1450297::p.Ser242*/c.725C>G
PF3D7_1113300::UDP-galactose+transporter%2C+putative::SNP::Pf3D7_11_v3::519297::p.Phe37Val/c.109T>G
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::INDEL::Pf3D7_10_v3::1449560::p.Met487fs/c.1461delG
PF3D7_1141300::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_11_v3::1659595::c.2626-113delT
PF3D7_1352600::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2098478::c.526+27_526+28insT
PF3D7_1362500::exonuclease%2C+putative::INDEL::Pf3D7_13_v3::2504223::c.950-43_950-42insT
PF3D7_0223400::rifin+%28RIF%29::SNP::Pf3D7_02_v3::913758::p.Ile95Ile/c.285C>A
PF3D7_0223400::rifin+%28RIF%29::SNP::Pf3D7_02_v3::913761::p.Gln96Gln/c.288A>G
PF3D7_0223400::rifin+%28RIF%29::SNP::Pf3D7_02_v3::913770::p.Ile99Ile/c.297T>A
PF3D7_0727900::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_07_v3::1186766::p.Arg789Ile/c.2366G>T
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1449790::p.Ile411Asn/c.1232T>A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1451010::p.Ser110Arg/c.330T>A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1451017::p.Arg108Lys/c.323G>A
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::SNP::Pf3D7_10_v3::1451060::p.Ala94Thr/c.280G>A
PF3D7_1136600::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_11_v3::1444765::p.Ser1088Asn/c.3263G>A
PF3D7_1150400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::2028431::p.Gly872Glu/c.2615G>A
PF3D7_1301000::rifin%2C+pseudogene+%28RIF%29::SNP::Pf3D7_13_v3::66099::p.Gly187Cys/c.559G>T
::::SNP::Pf3D7_13_v3::122460::n.122460C>G
::::SNP::Pf3D7_14_v3::3131049::n.3131049C>A
::::INDEL::Pf3D7_04_v3::481042::n.481042_481043insAT
::::INDEL::Pf3D7_05_v3::1231350::n.1231351_1231388delATATATATATATATATATATATATATATATATATATAT
PF3D7_0629300::phosphatidylcholine-sterol+acyltransferase+precursor%2C+putative+%28PL%29::INDEL::Pf3D7_06_v3::1205735::p.Ser196_Asp223del/c.586_669delTCGGTTGGACAACAAAATGATTATGTTGGACAACAAAACGATCCGGTTGGACAACAAAACGATCCGGTTGGACAACAAAACGAT
::::INDEL::Pf3D7_10_v3::56671::n.56672_56673delTA
PF3D7_1036800::acetyl-CoA+transporter%2C+putative::INDEL::Pf3D7_10_v3::1451632::p.Leu5fs/c.14delT
::::INDEL::Pf3D7_11_v3::1046919::n.1046920_1046923delTATA
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_12_v3::1176609::p.Tyr854_Lys859del/c.2560_2577delTACGAGGCATCTCATAAG
PF3D7_1305300::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::266540::p.Asn214dup/c.640_642dupAAT
::::INDEL::Pf3D7_13_v3::531317::n.531317_531318insAT
::::INDEL::Pf3D7_13_v3::1763665::n.1763666_1763668delTAT
PF3D7_1359000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2336583::p.Asn3088_Asn3089dup/c.9262_9267dupAATAAT
::::INDEL::Pf3D7_14_v3::71175::n.71176_71193delATATATATATATATATAT
::::INDEL::Pf3D7_14_v3::3163255::n.3163255_3163256insTTTA
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5575994::"Lim MY, LaMonte G, et al. UDP-galactose and Acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat Microbiol. 2016;1():16166. doi:10.1038/nmicrobiol.2016.166"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC3940870::"McNamara CW, Lee MC, et al. Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria. Nature. 2013;504(7479):248-253. doi:10.1038/nature12782"
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC6712813::"Foguim FT, Robert MG, et al. Low polymorphisms in pfact, pfugt and pfcarl genes in African Plasmodium falciparum isolates and absence of association with susceptibility to common anti-malarial drugs. Malar J. 2019;18():293. doi:10.1186/s12936-019-2919-3"
PMC5923180::"Dembele L, Gupta DK, et al. Imidazolopiperazines Kill both Rings and Dormant Rings in Wild-Type and K13 Artemisinin-Resistant Plasmodium falciparum In Vitro. Antimicrob Agents Chemother. 2018;62(5):e02235-17. doi:10.1128/AAC.02235-17"
PMC5913983::"Rangel GW, Clark MA, et al. Enhanced Ex Vivo Plasmodium vivax Intraerythrocytic Enrichment and Maturation for Rapid and Sensitive Parasite Growth Assays. Antimicrob Agents Chemother. 2018;62(4):e02519-17. doi:10.1128/AAC.02519-17"
PMC4958248::"LaMonte G, Lim MY, et al. Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance. mBio. 2016;7(4):e00696-16. doi:10.1128/mBio.00696-16"
PMC5089693::"Ang ML, Pethe K Contribution of high‐content imaging technologies to the development of anti‐infective drugs. Cytometry A. 2016;89(8):755-760. doi:10.1002/cyto.a.22885"
PMC4890880::"Swann J, Corey V, et al. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infect Dis. 2016;2(4):281-293. doi:10.1021/acsinfecdis.5b00143"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4567591::"Ang ML, Murima P, et al. Next-generation antimicrobials: from chemical biology to first-in-class drugs. Arch Pharm Res. 2015;38():1702-1717. doi:10.1007/s12272-015-0645-0"
PMC4112793::"Tuntland T, Ethell B, et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol. 2014;5():174. doi:10.3389/fphar.2014.00174"
PMC3957848::"Zeeman AM, van Amsterdam SM, et al. KAI407, a Potent Non-8-Aminoquinoline Compound That Kills Plasmodium cynomolgi Early Dormant Liver Stage Parasites In Vitro. Antimicrob Agents Chemother. 2014;58(3):1586-1595. doi:10.1128/AAC.01927-13"
PMC3941073::"Flannery EL, Chatterjee AK, et al. Antimalarial Drug Discovery: Approaches and Progress towards New Medicines. Nat Rev Microbiol. 2013;11(12):849-862. doi:10.1038/nrmicro3138"
PMC3762334::"Biamonte MA, Wanner J, et al. Recent advances in malaria drug discovery. Bioorg Med Chem Lett. 2013;23(10):2829-2843. doi:10.1016/j.bmcl.2013.03.067"
|
MMV011438 |
COC(=O)c1ccc(cc1)C1N(C(=O)c2ccccc2)c2ccccc2N=C2CC(CC(O)=C12)c1ccc(F)cc1 |
::::SNP::Pf3D7_04_v3::979695::
::::SNP::Pf3D7_05_v3::992699::
PF3D7_0709700::lysophospholipase%2C+putative::SNP::Pf3D7_07_v3::435160::N346Y
::::INDEL::Pf3D7_09_v3::735985::
::::SNP::Pf3D7_08_v3::1468306::
::::SNP::Pf3D7_08_v3::1468307::
::::INDEL::Pf3D7_09_v3::735985::
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5263872::"Istvan ES, Mallari JP, et al. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat Commun. 2017;8():14240. doi:10.1038/ncomms14240"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6989105::"Sindhe KM, Wu W, et al. Plasmodium falciparum Resistance to a Lead Benzoxaborole Due to Blocked Compound Activation and Altered Ubiquitination or Sumoylation. mBio. 2020;11(1):e02640-19. doi:10.1128/mBio.02640-19"
PMC6377847::"Larsen EM, Johnson RJ Microbial esterases and ester prodrugs: An unlikely marriage for combatting antibiotic resistance. Drug Dev Res. 2018;80(1):33-47. doi:10.1002/ddr.21468"
PMC4168161::"Fletcher S, Avery VM A novel approach for the discovery of chemically diverse anti-malarial compounds targeting the Plasmodium falciparum Coenzyme A synthesis pathway. Malar J. 2014;13():343. doi:10.1186/1475-2875-13-343"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
|
MMV1291222 |
COC1=CC=C(C=C1)N(CCCN1C(=O)C2=CC=CC3=CC=CC(C1=O)=C23)C(=O)C1=CC=CC=C1Cl |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
GNF-pf-5310 |
CC(C)(C)C1=CC=C(O)C(CNC2CCCCC2)=C1 |
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1176638::V850A
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1176656::A844V
PF3D7_0925800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::1034897::I528T
PF3D7_0925800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::1034912::T533I
PF3D7_0925800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::1034927::I538T
|
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
|
MMV665924 |
COC1=CC=C(C=C1)C(=O)C1CC1C1=CC=C(Cl)C=C1 |
PF3D7_0525100::acyl-CoA+synthetase+%28ACS10%29::SNP::Pf3D7_05_v3::1042644::M300I
PF3D7_1238800::acyl-CoA+synthetase+%28ACS11%29::SNP::Pf3D7_12_v3::1612304::D648Y
PF3D7_1238800::acyl-CoA+synthetase+%28ACS11%29::SNP::Pf3D7_12_v3::1612364::E668K
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
KAF156 |
Fc1ccc(Nc2n3c(C(C)(N(C(CN)=O)CC3)C)nc2c4ccc(F)cc4)cc1 |
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5575994::"Lim MY, LaMonte G, et al. UDP-galactose and Acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat Microbiol. 2016;1():16166. doi:10.1038/nmicrobiol.2016.166"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC4135840::"Kuhen KL, Chatterjee AK, et al. KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrob Agents Chemother. 2014;58(9):5060-5067. doi:10.1128/AAC.02727-13"
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMID32359426::"Vanaerschot M, Murithi JM, et al. Inhibition of Resistance-Refractory P. Falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chem Biol. 2020 ;S2451-9456(20)30115-X. doi: 10.1016/j.chembiol.2020.04.001."
PMC7145572::"Armstrong JF, Faccenda E, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res. 2019;48(D1):D1006-D1021. doi:10.1093/nar/gkz951"
PMC7203758::"Voorberg-van der Wel AM, Zeeman AM, et al. Dual-Luciferase-Based Fast and Sensitive Detection of Malaria Hypnozoites for the Discovery of Antirelapse Compounds. Anal Chem. 2020;92(9):6667-6675. doi:10.1021/acs.analchem.0c00547"
PMC7142784::"Sweeney-Jones AM, Gagaring K, et al. Antimalarial Peptide and Polyketide Natural Products from the Fijian Marine Cyanobacterium Moorea producens. Mar Drugs. 2020;18(3):167. doi:10.3390/md18030167"
PMC6941357::"Charman SA, Andreu A, et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J. 2020;19():1. doi:10.1186/s12936-019-3075-5"
PMC6805675::"Cowell AN, Winzeler EA Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med. 2019;11():63. doi:10.1186/s13073-019-0673-3"
PMC6744662::"Yousefinejad S, Mahboubifar M, et al. Quantitative structure–activity relationship to predict the anti-malarial activity in a set of new imidazolopiperazines based on artificial neural networks. Malar J. 2019;18():310. doi:10.1186/s12936-019-2941-5"
PMC6712813::"Foguim FT, Robert MG, et al. Low polymorphisms in pfact, pfugt and pfcarl genes in African Plasmodium falciparum isolates and absence of association with susceptibility to common anti-malarial drugs. Malar J. 2019;18():293. doi:10.1186/s12936-019-2919-3"
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6630517::"Rossier J, Nasiri Sovari S, et al. Antiplasmodial Activity and In Vivo Bio-Distribution of Chloroquine Molecules Released with a 4-(4-Ethynylphenyl)-Triazole Moiety from Organometallo-Cobalamins. Molecules. 2019;24(12):2310. doi:10.3390/molecules24122310"
PMC6591700::"Yahiya S, Rueda-Zubiaurre A, et al. The antimalarial screening landscape—looking beyond the asexual blood stage. Curr Opin Chem Biol. 2019;50():1-9. doi:10.1016/j.cbpa.2019.01.029"
PMC6859814::"Cowell AN, Winzeler EA The genomic architecture of antimalarial drug resistance. Brief Funct Genomics. 2019;18(5):314-328. doi:10.1093/bfgp/elz008"
PMC6504873::"Penzo M, de las Heras-Dueña L, et al. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci Rep. 2019;9():7005. doi:10.1038/s41598-019-42801-x"
PMC6431062::"Tse EG, Korsik M, et al. The past, present and future of anti-malarial medicines. Malar J. 2019;18():93. doi:10.1186/s12936-019-2724-z"
PMC6431002::"Hooft van Huijsduijnen R, Wells T, et al. Two successful decades of Swiss collaborations to develop new anti-malarials. Malar J. 2019;18():94. doi:10.1186/s12936-019-2728-8"
PMC6403410::"van Schalkwyk DA, Blasco B, et al. Plasmodium knowlesi exhibits distinct in vitro drug susceptibility profiles from those of Plasmodium falciparum. Int J Parasitol Drugs Drug Resist. 2019;9():93-99. doi:10.1016/j.ijpddr.2019.02.004"
PMC6356859::"Anantpadma M, Lane T, et al. Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads. ACS Omega. 2019;4(1):2353-2361. doi:10.1021/acsomega.8b02948"
PMC6467762::"White J, Dhingra SK, et al. Identification and mechanistic understanding of dihydroorotate dehydrogenase point mutations in Plasmodium falciparum that confer in vitro resistance to the clinical candidate DSM265. ACS Infect Dis. 2018;5(1):90-101. doi:10.1021/acsinfecdis.8b00211"
PMID30223692::"Koller R, Mombo-Ngoma G, et al. The early preclinical and clinical development of ganaplacide (KAF156), a novel antimalarial compound.. Expert Opin Investig Drugs. 2018;27(10):803-810. doi:3"
PMC5756412::"Leong FJ, Jain JP, et al. A phase 1 evaluation of the pharmacokinetic/pharmacodynamic interaction of the anti-malarial agents KAF156 and piperaquine. Malar J. 2018;17():7. doi:10.1186/s12936-017-2162-8"
PMID31385706::"Ashton TD, Devine SM, et al. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials.. J Med Chem. 2019;62(23):10526-10562. doi:3"
PMC6073090::"Mathews ES, Odom John AR Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Res. 2018;7():F1000 Faculty Rev-1170. doi:10.12688/f1000research.14874.1"
PMID27486238::"Huskey SE, Forseth RR, et al. Utilization of Stable Isotope Labeling to Facilitate the Identification of Polar Metabolites of KAF156, an Antimalarial Agent.. Drug Metab Dispos. 2016;44(10):1697-708. doi:3"
PMC5142602::"White NJ, Duong TT, et al. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria. N Engl J Med. 2016;375(12):1152-1160. doi:10.1056/NEJMoa1602250"
PMC6013505::"Ashley EA, Phyo AP Drugs in Development for Malaria. Drugs. 2018;78(9):861-879. doi:10.1007/s40265-018-0911-9"
PMC5923180::"Dembele L, Gupta DK, et al. Imidazolopiperazines Kill both Rings and Dormant Rings in Wild-Type and K13 Artemisinin-Resistant Plasmodium falciparum In Vitro. Antimicrob Agents Chemother. 2018;62(5):e02235-17. doi:10.1128/AAC.02235-17"
PMID26103616::Diagana TT. Supporting malaria elimination with 21st century antimalarial agent drug discovery.. Drug Discov Today. 2015;20(10):1265-70. doi:3
PMC4249437::"Leong FJ, Zhao R, et al. A First-in-Human Randomized, Double-Blind, Placebo-Controlled, Single- and Multiple-Ascending Oral Dose Study of Novel Imidazolopiperazine KAF156 To Assess Its Safety, Tolerability, and Pharmacokinetics in Healthy Adult Volunteers. Antimicrob Agents Chemother. 2014;58(11):6437-6443. doi:10.1128/AAC.03478-14"
PMC5095999::"Bhagavathula AS, Elnour AA, et al. Alternatives to currently used antimalarial drugs: in search of a magic bullet. Infect Dis Poverty. 2016;5():103. doi:10.1186/s40249-016-0196-8"
|
GNF-Pf-4283 |
OC1=C2C(SC3=CC=CC=C3N=C2C4=CC=CC=C14)C5=CC=CO5 |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV1271410 |
Cc1ccc(c(C)c1)S(=O)(=O)N(Cc2ccc(cc2)C(=O)NC3CC3)C4CC4 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
GNF-Pf-5648 |
CCN(CC)CC1=CC(NC2=CC=NC3=CC(Cl)=CC=C23)=CC=C1O |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
|
MMV1490405 |
CC(C)Cc1ccc(cc1)C(C)c1nn2c(nnc2s1)-c1ccco1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV019881 |
c1ccc(cc1)CN2CCC(CC2)NC(=O)c3cc(cc(c3)C(=O)NC4CCN(CC4)Cc5ccccc5)C(=O)NC6CCN(CC6)Cc7ccccc7 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5770543::"Subramanian G, Belekar MA, et al. Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules. mSphere. 2018;3(1):e00534-17. doi:10.1128/mSphere.00534-17"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC6072474::"Devine SM, MacRaild CA, et al. Antimalarial drug discovery targeting apical membrane antigen 1 †The authors declare no competing interests. . Medchemcomm. 2016;8(1):13-20. doi:10.1039/c6md00495d"
PMC4144897::"Sanders NG, Sullivan DJ, et al. Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity. PLoS One. 2014;9(8):e105817. doi:10.1371/journal.pone.0105817"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
|
MMV1385304 |
CCN(CC)S(=O)(=O)C1=CC=C(C=C1)C(C)NC(=O)C1=NN(CC)C(=O)C2=CC=CC=C12 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV019993 |
CC(Nc1nncc(n1)-c1ccc(cc1)C(F)(F)F)c1cn(C)nc1C |
|
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
|
MMV665785 |
CC(C)(C)c1ccc(O)c(CNC2CCCCC2)c1 |
::::SNP::Pf3D7_09_v3::36504::n.36504G>A
::::SNP::Pf3D7_10_v3::1661277::
::::SNP::Pf3D7_11_v3::979514::n.979514G>T
::::SNP::Pf3D7_11_v3::979516::n.979516A>T
::::INDEL::Pf3D7_01_v3::445744::n.445744_445745insTTATT
::::INDEL::Pf3D7_06_v3::1400268::
PF3D7_1335200::reticulocyte+binding+protein+homologue+6%2C+pseudogene+%28RH6%29::INDEL::Pf3D7_13_v3::1424983::p.Lys203_Lys204insGluGluTyrAspLys/c.595_609dupGAAGAATATGATAAG
::::SNP::Pf3D7_01_v3::267::n.267G>A
PF3D7_0106400::pre-rRNA-processing+protein+TSR2%2C+putative::SNP::Pf3D7_01_v3::272860::p.Asn54Asn/c.162T>C
PF3D7_0115700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::613387::p.Gln503Glu/c.1507C>G
::::SNP::Pf3D7_03_v3::1066694::
::::SNP::Pf3D7_03_v3::1066722::
::::SNP::Pf3D7_03_v3::1066729::
PF3D7_0612200::leucine-rich+repeat+protein+%28LRR6%29::SNP::Pf3D7_06_v3::515454::p.Ile1365Ile/c.4095A>T
PF3D7_0818900::heat+shock+protein+70+%28HSP70%29::SNP::Pf3D7_08_v3::861504::p.Arg374Ile/c.1121G>T
::::SNP::Pf3D7_09_v3::1540087::
::::SNP::Pf3D7_09_v3::1540119::
::::SNP::Pf3D7_10_v3::2934::n.2934A>C
::::SNP::Pf3D7_10_v3::3132::n.3132A>T
::::SNP::Pf3D7_10_v3::3133::n.3133C>A
::::SNP::Pf3D7_10_v3::3135::n.3135T>G
::::SNP::Pf3D7_10_v3::3142::n.3142T>C
::::SNP::Pf3D7_10_v3::3155::n.3155C>T
::::SNP::Pf3D7_10_v3::3445::n.3445A>G
::::SNP::Pf3D7_10_v3::3473::n.3473C>T
::::SNP::Pf3D7_10_v3::3492::n.3492T>G
::::SNP::Pf3D7_10_v3::3543::n.3543C>T
::::SNP::Pf3D7_10_v3::3547::n.3547A>C
::::SNP::Pf3D7_10_v3::3553::n.3553A>T
::::SNP::Pf3D7_10_v3::3783::n.3783T>C
::::SNP::Pf3D7_10_v3::4357::n.4357A>T
::::SNP::Pf3D7_10_v3::4376::n.4376A>T
::::SNP::Pf3D7_10_v3::4517::n.4517G>C
::::SNP::Pf3D7_10_v3::4519::n.4519T>C
::::SNP::Pf3D7_10_v3::4750::n.4750G>A
::::SNP::Pf3D7_10_v3::4751::n.4751A>G
::::SNP::Pf3D7_10_v3::5172::n.5172C>T
::::SNP::Pf3D7_10_v3::5174::n.5174G>C
::::SNP::Pf3D7_10_v3::5175::n.5175T>C
::::SNP::Pf3D7_10_v3::5177::n.5177G>C
::::SNP::Pf3D7_10_v3::5193::n.5193T>A
::::SNP::Pf3D7_10_v3::5342::n.5342T>C
::::SNP::Pf3D7_10_v3::5344::n.5344T>G
::::SNP::Pf3D7_10_v3::5345::n.5345C>G
::::SNP::Pf3D7_10_v3::5371::n.5371A>T
::::SNP::Pf3D7_10_v3::6531::n.6531G>C
::::SNP::Pf3D7_10_v3::6554::n.6554G>T
::::SNP::Pf3D7_10_v3::6555::n.6555A>C
::::SNP::Pf3D7_10_v3::6557::n.6557G>T
::::SNP::Pf3D7_10_v3::6562::n.6562T>C
::::SNP::Pf3D7_10_v3::6564::n.6564C>A
::::SNP::Pf3D7_10_v3::6593::n.6593G>A
::::SNP::Pf3D7_10_v3::7719::n.7719G>A
::::SNP::Pf3D7_11_v3::2037991::
PF3D7_1222600::transcription+factor+with+AP2+domain%28s%29+%28AP2-G%29::SNP::Pf3D7_12_v3::910152::p.Lys984*/c.2950A>T
PF3D7_1240600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1721925::p.His784His/c.2352T>C
PF3D7_1240600::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1722445::p.Ser958Pro/c.2872T>C
PF3D7_1240900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1735852::p.Arg104Ser/c.310C>A
PF3D7_1240900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1735856::p.Val105Gly/c.314T>G
PF3D7_1240900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1735859::p.Asp106Ala/c.317A>C
PF3D7_1240900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1735865::p.Tyr108Cys/c.323A>G
PF3D7_1240900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::1735882::p.Gly114Arg/c.340G>A
PF3D7_1438400::metacaspase-like+protein+%28MCA2%29::SNP::Pf3D7_14_v3::1555487::c.5369-82T>A
::::INDEL::Pf3D7_01_v3::518265::n.518266_518270delTTGTT
PF3D7_0220800::cytoadherence+linked+asexual+protein+2+%28CLAG2%29::INDEL::Pf3D7_02_v3::839826::c.922+62_922+63insTTTA
::::INDEL::Pf3D7_03_v3::13424::n.13425_13436delACATGACTACTT
::::INDEL::Pf3D7_03_v3::16318::n.16318_16319insCTAAC
::::INDEL::Pf3D7_03_v3::101931::n.101932delT
PF3D7_0305500::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_03_v3::269597::p.Asp1229_Asp1230del/c.3684_3689delTGATGA
::::INDEL::Pf3D7_03_v3::1066700::
::::INDEL::Pf3D7_03_v3::1066703::
PF3D7_0421300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::974090::p.Asp825_Asp833dup/c.2475_2501dupCGATGATGATGATGACGACGAAGACGA
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::582873::c.5284-52_5284-51insCATA
::::INDEL::Pf3D7_08_v3::564313::n.564313_564314insATAC
::::INDEL::Pf3D7_09_v3::999163::n.999163_999164insAT
::::INDEL::Pf3D7_10_v3::4047::n.4047_4048insGAG
::::INDEL::Pf3D7_11_v3::16311::n.16311_16312insTTGAGGT
::::INDEL::Pf3D7_11_v3::16315::n.16316_16321delTGTCTT
::::INDEL::Pf3D7_11_v3::16323::n.16324delT
PF3D7_1132400::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_11_v3::1256578::p.Asp1030_Asn1031del/c.3088_3093delGATAAT
PF3D7_1142500::60S+ribosomal+protein+L28+%28RPL28%29::INDEL::Pf3D7_11_v3::1706178::c.221+47_221+48insAT
PF3D7_1222600::transcription+factor+with+AP2+domain%28s%29+%28AP2-G%29::INDEL::Pf3D7_12_v3::910120::p.Glu975fs/c.2922delA
PF3D7_1222800::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_12_v3::922012::c.193-32_193-29delATTT
::::INDEL::Pf3D7_12_v3::1439468::n.1439469_1439472delTATG
PF3D7_1240900::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::1735880::p.Gly114fs/c.339_340insAA
PF3D7_1306300::SAM+dependent+methyltransferase%2C+putative::INDEL::Pf3D7_13_v3::296163::c.2234+24_2234+25insAAAAT
PF3D7_1331600::protein+tyrosine+phosphatase-like+protein%2C+putative+%28PTPLA%29::INDEL::Pf3D7_13_v3::1317557::c.196+53_196+54insTAAAA
::::INDEL::Pf3D7_13_v3::1995658::n.1995659_1995664delAAAAAG
::::INDEL::Pf3D7_13_v3::2902666::
::::INDEL::Pf3D7_13_v3::2902676::
::::INDEL::Pf3D7_13_v3::2902688::
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5770543::"Subramanian G, Belekar MA, et al. Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules. mSphere. 2018;3(1):e00534-17. doi:10.1128/mSphere.00534-17"
PMC5075070::"Creek DJ, Chua HH, et al. Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrob Agents Chemother. 2016;60(11):6650-6663. doi:10.1128/AAC.01226-16"
|
MMV006455 |
CCCN(CCC)CC(O)COC1=C(C=CC=C1)C(=O)NC1=CC=CC=C1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6376154::"Nyagwange J, Awino E, et al. Leveraging the Medicines for Malaria Venture malaria and pathogen boxes to discover chemical inhibitors of East Coast fever. Int J Parasitol Drugs Drug Resist. 2019;9():80-86. doi:10.1016/j.ijpddr.2019.01.002"
PMC5683671::"Chirawurah JD, Ansah F, et al. Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates. Int J Parasitol Drugs Drug Resist. 2017;7(3):399-406. doi:10.1016/j.ijpddr.2017.10.005"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
AZD-1480 |
Fc1cnc(nc1)[C@@H](Nc1ncc(c(n1)Nc1n[nH]c(c1)C)Cl)C |
|
|
MMV1010248 |
FC(F)Sc1ccc2nc3ccccc3c(N3CCOCC3)c2c1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV1454442 |
|
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
Cryptolepine hydrochloride |
[Cl-].C[n+]1c2C=CCCc2cc3[n-]c4ccccc4c13 |
|
PMC7050641::"Feng J, Leone J, et al. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front Med (Lausanne). 2020;7():6. doi:10.3389/fmed.2020.00006"
PMC6990627::"Augustin N, Nuthakki VK, et al. Discovery of Helminthosporin, an Anthraquinone Isolated from Rumex abyssinicus Jacq as a Dual Cholinesterase Inhibitor. ACS Omega. 2020;5(3):1616-1624. doi:10.1021/acsomega.9b03693"
PMC6990624::"Hathout RM, Metwally AA, et al. Prediction of Drug Loading in the Gelatin Matrix Using Computational Methods. ACS Omega. 2020;5(3):1549-1556. doi:10.1021/acsomega.9b03487"
PMC6644280::"Mensah KB, Benneh C, et al. Cryptolepine, the Main Alkaloid of the Antimalarial Cryptolepis sanguinolenta (Lindl.) Schlechter, Induces Malformations in Zebrafish Embryos. Biochem Res Int. 2019;2019():7076986. doi:10.1155/2019/7076986"
PMC6361412::"Javdani N, Rahpeyma SS, et al. Effect of superparamagnetic nanoparticles coated with various electric charges on α-synuclein and β-amyloid proteins fibrillation process. Int J Nanomedicine. 2019;14():799-808. doi:10.2147/IJN.S190354"
PMC6258947::"Jang Y, Shin JS, et al. Salinomycin Inhibits Influenza Virus Infection by Disrupting Endosomal Acidification and Viral Matrix Protein 2 Function. J Virol. 2018;92(24):e01441-18. doi:10.1128/JVI.01441-18"
PMC6099078::"Singh NA, Bhardwaj V, et al. EGCG Nanoparticles Attenuate Aluminum Chloride Induced Neurobehavioral Deficits, Beta Amyloid and Tau Pathology in a Rat Model of Alzheimer’s Disease. Front Aging Neurosci. 2018;10():244. doi:10.3389/fnagi.2018.00244"
PMC6017974::"Yonekura K, Shinoda M, et al. Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl[b]quinolines and Subsequent Transformation to Cryptolepine Derivatives. Molecules. 2018;23(4):838. doi:10.3390/molecules23040838"
PMC5885295::"Ameyaw EO, Asmah KB, et al. Isobolographic analysis of co-administration of two plant-derived antiplasmodial drug candidates, cryptolepine and xylopic acid, in Plasmodium berghei. Malar J. 2018;17():153. doi:10.1186/s12936-018-2283-8"
PMC5745596::"Forkuo AD, Ansah C, et al. In vitro anti-malarial interaction and gametocytocidal activity of cryptolepine. Malar J. 2017;16():496. doi:10.1186/s12936-017-2142-z"
PMC5741962::"Forkuo AD, Ansah C, et al. Identification of cryptolepine metabolites in rat and human hepatocytes and metabolism and pharmacokinetics of cryptolepine in Sprague Dawley rats. BMC Pharmacol Toxicol. 2017;18():84. doi:10.1186/s40360-017-0188-8"
PMC5661077::"Osafo N, Mensah KB, et al. Phytochemical and Pharmacological Review of Cryptolepis sanguinolenta (Lindl.) Schlechter. Adv Pharmacol Sci. 2017;2017():3026370. doi:10.1155/2017/3026370"
PMC5548052::"Liu J, He Y, et al. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol Med Rep. 2017;16(3):2595-2603. doi:10.3892/mmr.2017.6879"
PMC5431443::"Pal HC, Prasad R, et al. Cryptolepine inhibits melanoma cell growth through coordinated changes in mitochondrial biogenesis, dynamics and metabolic tumor suppressor AMPKα1/2-LKB1. Sci Rep. 2017;7():1498. doi:10.1038/s41598-017-01659-7"
PMC5513498::"Yin L, Yuvienco C, et al. Protein Based Therapeutic Delivery Agents: Contemporary Developments and Challenges. Biomaterials. 2017;134():91-116. doi:10.1016/j.biomaterials.2017.04.036"
PMC6130497::"Yemitan OK, Adeyemi OO Mechanistic assessment of the analgesic, anti-inflammatory and antipyretic actions of Dalbergia saxatilis in animal models. Pharm Biol. 2017;55(1):898-905. doi:10.1080/13880209.2017.1283706"
PMC6273109::"Pal HC, Katiyar SK Cryptolepine, a Plant Alkaloid, Inhibits the Growth of Non-Melanoma Skin Cancer Cells through Inhibition of Topoisomerase and Induction of DNA Damage. Molecules. 2016;21(12):1758. doi:10.3390/molecules21121758"
PMC6044610::"Dana S, Keshri SK, et al. Design, Synthesis and Evaluation of Bifunctional Acridinine−Naphthalenediimide Redox-Active Conjugates as Antimalarials. ACS Omega. 2016;1(3):318-333. doi:10.1021/acsomega.6b00060"
PMC4761911::"Zahari A, Ablat A, et al. Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata. Sci Rep. 2016;6():21517. doi:10.1038/srep21517"
PMC4754817::"Forkuo AD, Ansah C, et al. Synergistic anti-malarial action of cryptolepine and artemisinins. Malar J. 2016;15():89. doi:10.1186/s12936-016-1137-5"
PMID23643517::"Kuntworbe N, Ofori M, et al. Pharmacokinetics and in vivo chemosuppressive activity studies on cryptolepine hydrochloride and cryptolepine hydrochloride-loaded gelatine nanoformulation designed for parenteral administration for the treatment of malaria.. Acta Trop. 2013;127(3):165-73. doi:3"
PMID22436019::"Kuntworbe N, Alany RG, et al. Determination of pKa and forced degradation of the indoloquinoline antimalarial compound cryptolepine hydrochloride.. Pharm Dev Technol. 2013;18(4):866-76. doi:3"
PMC3364375::"Kuntworbe N, Al-Kassas R Design and In Vitro Haemolytic Evaluation of Cryptolepine Hydrochloride-Loaded Gelatine Nanoparticles as a Novel Approach for the Treatment of Malaria. AAPS PharmSciTech. 2012;13(2):568-581. doi:10.1208/s12249-012-9775-6"
PMID12722159::"Gibbons S, Fallah F, et al. Cryptolepine hydrochloride: a potent antimycobacterial alkaloid derived from Cryptolepis sanguinolenta.. Phytother Res. 2003;17(4):434-6. doi:3"
PMID28131886::"Appunni S, Rajisha PM, et al. Targeting PknB, an eukaryotic-like serine/threonine protein kinase of Mycobacterium tuberculosis with phytomolecules.. Comput Biol Chem. 2017;67():200-204. doi:3"
PMID43386::"Boakye-Yiadom K, Heman-Ackah SM Cryptolepine hydrochloride effect on Staphylococcus aureus.. J Pharm Sci. 1979;68(12):1510-4. doi:3"
PMC3662116::"Olajide OA, Bhatia HS, et al. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine. Evid Based Complement Alternat Med. 2013;2013():459723. doi:10.1155/2013/459723"
PMC3777419::"Kumar EV, Etukala JR, et al. Indolo[3,2-b]quinolines: Synthesis, Biological Evaluation and Structure Activity-Relationships. Mini Rev Med Chem. 2008;8(6):538-554. doi:"
PMC3195846::"Sengupta S, Chowdhury S, et al. Cryptolepine-Induced Cell Death of Leishmania donovani Promastigotes Is Augmented by Inhibition of Autophagy. Mol Biol Int. 2011;2011():187850. doi:10.4061/2011/187850"
PMC3409919::"Ajayi AF, Akhigbe RE Antifertility activity of Cryptolepis sanguinolenta leaf ethanolic extract in male rats. J Hum Reprod Sci. 2012;5(1):43-47. doi:10.4103/0974-1208.97799"
PMC3870201::"Bolden S Jr, Zhu XY, et al. Structure-Activity Relationship (SAR) and Preliminary Mode of Action Studies of 3-Substituted Benzylthioquinolinium Iodide as Anti-opportunistic Infection Agents. Eur J Med Chem. 2013;70():10.1016/j.ejmech.2013.09.044. doi:10.1016/j.ejmech.2013.09.044"
PMC2573129::"Rojas M, Wright CW, et al. Genomewide Expression Profiling of Cryptolepine-Induced Toxicity in Saccharomyces cerevisiae . Antimicrob Agents Chemother. 2008;52(11):3844-3850. doi:10.1128/AAC.00532-08"
PMID17064915::"Olajide OA, Heiss EH, et al. Synthetic cryptolepine inhibits DNA binding of NF-kappaB.. Bioorg Med Chem. 2007;15(1):43-9. doi:3"
PMC3878730::"Amoa Onguéné P, Ntie-Kang F, et al. The potential of anti-malarial compounds derived from African medicinal plants, part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J. 2013;12():449. doi:10.1186/1475-2875-12-449"
PMC6271626::"Wang L, Świtalska M, et al. Design, Synthesis, and Biological Evaluation of Artemisinin-Indoloquinoline Hybrids as Potent Antiproliferative Agents. Molecules. 2014;19(11):19021-19035. doi:10.3390/molecules191119021"
PMC3158950::"Boateng CA, Zhu XY, et al. Optimization of 3-(phenylthio)quinolinium compounds against opportunistic fungal pathogens. Eur J Med Chem. 2011;46(5):1789-1797. doi:10.1016/j.ejmech.2011.02.034"
PMID9526563::"Bierer DE, Fort DM, et al. Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities.. J Med Chem. 1998;41(6):894-901. doi:3"
PMID9548744::"Bonjean K, De Pauw-Gillet MC, et al. The DNA intercalating alkaloid cryptolepine interferes with topoisomerase II and inhibits primarily DNA synthesis in B16 melanoma cells.. Biochemistry. 1998;37(15):5136-46. doi:3"
|
DDD01025389 |
NC(=O)C1=C2NC(=NC2=CC=C1)[C@H]1CCN(CC2=NC=CC=C2)C1 |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV024406 |
Clc1cccc(NC(=O)c2cnc(N3CCN(CC3)c3ccncc3)c(Cl)c2)c1 |
|
PMC6805474::"Maccesi M, Aguiar PH, et al. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors. 2019;12():493. doi:10.1186/s13071-019-3747-6"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC6420171::"Colon BL, Rice CA, et al. Phenotypic Screens Reveal Posaconazole as a Rapidly Acting Amebicidal Combination Partner for Treatment of Primary Amoebic Meningoencephalitis. J Infect Dis. 2018;219(7):1095-1103. doi:10.1093/infdis/jiy622"
PMC6095626::"Hennessey KM, Rogiers IC, et al. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS Negl Trop Dis. 2018;12(8):e0006673. doi:10.1371/journal.pntd.0006673"
PMC5192139::"Vila T, Lopez-Ribot JL Screening the Pathogen Box for Identification of Candida albicans Biofilm Inhibitors. Antimicrob Agents Chemother. 2016;61(1):e02006-16. doi:10.1128/AAC.02006-16"
|
MMV1044457 |
CNC1=C(C(=O)NC(C)C2=CC=C(C=C2)C(C)C)C(C)=NS1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
NC17-22-2 |
|
PF3D7_0708000::cytoskeleton+associated+protein%2C+putative::SNP::Pf3D7_07_v3::371556::c.2509-18T>A
::::SNP::Pf3D7_08_v3::1457504::
::::SNP::Pf3D7_12_v3::3954::n.3954C>T
::::SNP::Pf3D7_12_v3::3962::n.3962C>G
PF3D7_1315800::transcription+factor+MYB1+%28MYB1%29::SNP::Pf3D7_13_v3::660290::p.Asn325Tyr/c.973A>T
PF3D7_1413800::diphthamide+synthesis+protein%2C+putative::SNP::Pf3D7_14_v3::548898::p.Phe315Phe/c.945C>T
::::INDEL::Pf3D7_05_v3::365459::n.365459_365460insCTTTTTTTTTTCT
::::INDEL::Pf3D7_06_v3::296817::n.296818_296823delTATTAT
::::INDEL::Pf3D7_08_v3::1457507::
PF3D7_0925000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_09_v3::1012619::c.202-38_202-35delTTTT
PF3D7_0930700::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_09_v3::1223424::c.1281+33_1281+34insTATATATATA
::::INDEL::Pf3D7_11_v3::2006328::n.2006328_2006329insC
|
PMC7161062::"Huang J, Li X, et al. Formation Environment and Development Models for the Lower Cambrian Source Rocks of the Southern North China Plate, China. ACS Omega. 2020;5(14):8001-8011. doi:10.1021/acsomega.0c00077"
PMC7036857::"Steliga T, Wojtowicz K, et al. Assessment of Biodegradation Efficiency of Polychlorinated Biphenyls (PCBs) and Petroleum Hydrocarbons (TPH) in Soil Using Three Individual Bacterial Strains and Their Mixed Culture. Molecules. 2020;25(3):709. doi:10.3390/molecules25030709"
PMC6993969::"Morales-McDevitt ME, Shi D, et al. Mesocosm experiments to better understand hydrocarbon half-lives for oil and oil dispersant mixtures. PLoS One. 2020;15(1):e0228554. doi:10.1371/journal.pone.0228554"
PMC7019756::"Kim BC, Kang M, et al. Clinical Factors Associated with Adherence to the Follow-Up Examination after Positive Fecal Occult Blood Test in National Colorectal Cancer Screening. J Clin Med. 2020;9(1):260. doi:10.3390/jcm9010260"
PMC6525273::"Cahill N, O'Connor L, et al. Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales?. Sci Total Environ. 2019;672():618-624. doi:10.1016/j.scitotenv.2019.03.428"
PMC6346607::"Salam LB, Ishaq A Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech. 2019;9(2):46. doi:10.1007/s13205-019-1580-4"
PMC6145016::"Magro A, Ramon‐Portugal F, et al. The evolution of chemical defenses along invasion routes: Harmonia axyridis Pallas (Coccinellidae: Coleoptera) as a case study. Ecol Evol. 2018;8(16):8344-8353. doi:10.1002/ece3.4299"
PMC6029805::"Nguyen UT, Lincoln SA, et al. The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PLoS One. 2018;13(7):e0199784. doi:10.1371/journal.pone.0199784"
PMC6032916::"Wiesinger R, Pagnin L, et al. Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy. Angew Chem Int Ed Engl. 2018;57(25):7401-7407. doi:10.1002/anie.201713413"
PMC6013753::"Zhou X, Lei L, et al. A Systems Approach to Refine Disease Taxonomy by Integrating Phenotypic and Molecular Networks. EBioMedicine. 2018;31():79-91. doi:10.1016/j.ebiom.2018.04.002"
PMC5664764::"Adeniji AO, Okoh OO, et al. Petroleum Hydrocarbon Profiles of Water and Sediment of Algoa Bay, Eastern Cape, South Africa. Int J Environ Res Public Health. 2017;14(10):1263. doi:10.3390/ijerph14101263"
PMC5626990::"Engel AS, Liu C, et al. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill. Appl Environ Microbiol. 2017;83(20):e00784-17. doi:10.1128/AEM.00784-17"
PMC5468778::"Adeniji AO, Okoh OO, et al. Petroleum Hydrocarbon Fingerprints of Water and Sediment Samples of Buffalo River Estuary in the Eastern Cape Province, South Africa. J Anal Methods Chem. 2017;2017():2629365. doi:10.1155/2017/2629365"
PMC5358971::"Olson GM, Gao H, et al. Effect of Corexit 9500A on Mississippi Canyon crude oil weathering patterns using artificial and natural seawater. Heliyon. 2017;3(3):e00269. doi:10.1016/j.heliyon.2017.e00269"
PMC5030240::"Sarkar J, Kazy SK, et al. Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge. Front Microbiol. 2016;7():1407. doi:10.3389/fmicb.2016.01407"
PMC4693987::"Nguyen MT, Hanzelmann D, et al. Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response. Infect Immun. 2015;84(1):205-215. doi:10.1128/IAI.00822-15"
PMC4618287::"Bosch PJ, Peng L, et al. Proteomics Analysis of Dorsal Striatum Reveals Changes in Synaptosomal Proteins following Methamphetamine Self-Administration in Rats. PLoS One. 2015;10(10):e0139829. doi:10.1371/journal.pone.0139829"
PMC4586841::"Li K, Hong W, et al. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc Natl Acad Sci U S A. 2015;112(38):11905-11910. doi:10.1073/pnas.1514896112"
PMC4669372::"Li Y, Li F, et al. Effect of the ultrasound–Fenton oxidation process with the addition of a chelating agent on the removal of petroleum-based contaminants from soil. Environ Sci Pollut Res Int. 2015;22(23):18446-18455. doi:10.1007/s11356-015-5137-8"
PMC4551976::"Pecora ND, Li N, et al. Genomically Informed Surveillance for Carbapenem-Resistant Enterobacteriaceae in a Health Care System. mBio. 2015;6(4):e01030-15. doi:10.1128/mBio.01030-15"
PMC5562830::"Guo ZJ, Yu MH, et al. Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep. 2017;7():8768. doi:10.1038/s41598-017-08987-8"
PMC7101100::"Chen YY, Hsieh YC, et al. Genomic Insight into the Spread of Meropenem-Resistant Streptococcus pneumoniae Spain23F-ST81, Taiwan. Emerg Infect Dis. 2020;26(4):711-720. doi:10.3201/eid2604.190717"
PMID25976326::"Xu M, Wang Y, et al. Modern climate and vegetation variability recorded in organic compounds and carbon isotopic compositions in the Dianchi watershed.. Environ Sci Pollut Res Int. 2015;22(18):14314-24. doi:3"
PMC7036810::"Brzeszcz J, Kapusta P, et al. Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparing Their Actions with Biostimulation Treatment. Molecules. 2020;25(3):661. doi:10.3390/molecules25030661"
PMC5511650::"Zhang X, He J, et al. Geochemical Characteristics and Origins of the Crude Oil of Triassic Yanchang Formation in Southwestern Yishan Slope, Ordos Basin. Int J Anal Chem. 2017;2017():6953864. doi:10.1155/2017/6953864"
PMC4866148::"Dhami A, Dhasmana R, et al. Correlation of Retinal Nerve Fiber Layer Thickness and Axial Length on Fourier Domain Optical Coherence Tomography. J Clin Diagn Res. 2016;10(4):NC15-NC17. doi:10.7860/JCDR/2016/15038.7672"
PMC4253210::"Mody NB, Bankar SS, et al. Post Burn Contracture Neck: Clinical Profile and Management. J Clin Diagn Res. 2014;8(10):NC12-NC17. doi:10.7860/JCDR/2014/10187.5004"
PMC3919046::"Zhu S, Tong T, et al. Preparation of Multiwalled Carbon Nanotubes/Hydroxyl-Terminated Silicone Oil Fiber and Its Application to Analysis of Crude Oils. ScientificWorldJournal. 2014;2014():758043. doi:10.1155/2014/758043"
PMC5274629::"Kanthaswamy S, Ng J, et al. Mitigating Chinese-Indian rhesus macaque (Macaca mulatta) hybridity at the California National Primate Research Center (CNPRC). J Med Primatol. 2016;45(6):333-335. doi:10.1111/jmp.12231"
PMC6010179::"Hanevold C, Halbach S, et al. Changing outpatient referral patterns in a small pediatric nephrology practice. BMC Pediatr. 2018;18():195. doi:10.1186/s12887-018-1164-1"
PMC4237390::"Cheng L, Shi S, et al. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions. PLoS One. 2014;9(11):e113253. doi:10.1371/journal.pone.0113253"
PMC6006165::"Dogan AE, Yuksel C, et al. Brain lactate and pH in schizophrenia and bipolar disorder: a systematic review of findings from magnetic resonance studies. Neuropsychopharmacology. 2018;43(8):1681-1690. doi:10.1038/s41386-018-0041-9"
PMC4949757::"Papastavrou E, Dimitriadou M, et al. Nursing students’ satisfaction of the clinical learning environment: a research study. BMC Nurs. 2016;15():44. doi:10.1186/s12912-016-0164-4"
PMC2949430::"Kanthaswamy S, Kou A, et al. Population Genetic Statistics from Rhesus Macaques (Macaca mulatta) in Three Different Housing Configurations at the California National Primate Research Center. J Am Assoc Lab Anim Sci. 2010;49(5):598-609. doi:"
|
GNF-Pf-5349 |
S=C(NN=Cc1ccccn1)NC2CC3CC2C=C3 |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC3798273::"Spitzmüller A, Mestres J Prediction of the P. falciparum Target Space Relevant to Malaria Drug Discovery. PLoS Comput Biol. 2013;9(10):e1003257. doi:10.1371/journal.pcbi.1003257"
|
BI-1230 |
COC1=CC=C2C(O[C@@H]3C[C@@H]4N(C3)C(=O)[C@H](CCCCC\C=C/C3C[C@]3(NC4=O)C(O)=O)NC(=O)OC3CCCC3)=CC(=NC2=C1C)C1=CSC(NC(=O)C(C)C)=N1 |
|
PMC7232325::"Berthelot C, Zegeye A, et al. Unravelling the Role of Melanin in Cd and Zn Tolerance and Accumulation of Three Dark Septate Endophytic Species. Microorganisms. 2020;8(4):537. doi:10.3390/microorganisms8040537"
PMC7206043::Sternai P. Surface processes forcing on extensional rock melting. Sci Rep. 2020;10():7711. doi:10.1038/s41598-020-63920-w
PMC7205611::"Włodarczyk A, Selão TT, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun Biol. 2020;3():215. doi:10.1038/s42003-020-0910-8"
PMC7195585::"Li Y, Ye Q, et al. The ubiquity and coexistence of two FBPases in chloroplasts of photosynthetic eukaryotes and its evolutionary and functional implications. Plant Divers. 2019;42(2):120-125. doi:10.1016/j.pld.2019.09.002"
PMC7186381::"Wickham J, Corna A, et al. Human Cerebrospinal Fluid Induces Neuronal Excitability Changes in Resected Human Neocortical and Hippocampal Brain Slices. Front Neurosci. 2020;14():283. doi:10.3389/fnins.2020.00283"
PMC7179673::"Jamil M, Kountche BA, et al. A New Series of Carlactonoic Acid Based Strigolactone Analogs for Fundamental and Applied Research. Front Plant Sci. 2020;11():434. doi:10.3389/fpls.2020.00434"
PMC7194329::"Shola DT, Yang C, et al. New Additions to the CRISPR Toolbox: CRISPR-CLONInG and CRISPR-CLIP for Donor Construction in Genome Editing. CRISPR J. 2020;3(2):109-122. doi:10.1089/crispr.2019.0062"
PMC7191597::"Liyanapathiranage A, Peña MJ, et al. Nanocellulose-Based Sustainable Dyeing of Cotton Textiles with Minimized Water Pollution. ACS Omega. 2020;5(16):9196-9203. doi:10.1021/acsomega.9b04498"
PMC7157244::"Ahmed T, Shahid M, et al. Silver Nanoparticles Synthesized by Using Bacillus cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice. Pathogens. 2020;9(3):160. doi:10.3390/pathogens9030160"
PMC7189287::"Walker ZJ, VanWyngarden MJ, et al. Measurement of ex vivo resistance to proteasome inhibitors, IMiDs, and daratumumab during multiple myeloma progression. Blood Adv. 2020;4(8):1628-1639. doi:10.1182/bloodadvances.2019000122"
PMC7174588::"Qi Y, Wu H, et al. LncRNA-MIAT-Mediated miR-214-3p Silencing Is Responsible for IL-17 Production and Cardiac Fibrosis in Diabetic Cardiomyopathy. Front Cell Dev Biol. 2020;8():243. doi:10.3389/fcell.2020.00243"
PMC7187345::"Cacciani N, Salah H, et al. Chaperone co‐inducer BGP‐15 mitigates early contractile dysfunction of the soleus muscle in a rat ICU model. Acta Physiol (Oxf). 2019;229(1):e13425. doi:10.1111/apha.13425"
PMC7177504::"Ghosh M, Jana SC Fabrication of Hollow and Porous Tin-Doped Indium Oxide Nanofibers and Microtubes via a Gas Jet Fiber Spinning Process. Materials (Basel). 2020;13(7):1539. doi:10.3390/ma13071539"
PMC7176783::Perbal B. JCCS editorial board: a wide array of expertise. J Cell Commun Signal. 2020;14(1):5-17. doi:10.1007/s12079-020-00561-8
PMC7166518::"Reis VM, Teixeira KR Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol. 2015;55(8):931-949. doi:10.1002/jobm.201400898"
PMC7158691::"Masalova OV, Lesnova EI, et al. Genetically Modified Mouse Mesenchymal Stem Cells Expressing Non-Structural Proteins of Hepatitis C Virus Induce Effective Immune Response. Vaccines (Basel). 2020;8(1):62. doi:10.3390/vaccines8010062"
PMC7169754::"Kutner AJ, Friedman AJ Use of nitric oxide nanoparticulate platform for the treatment of skin and soft tissue infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(5):502-514. doi:10.1002/wnan.1230"
PMC7168573:: The 44th Annual Meeting of the European Society for Blood and Marrow Transplantation: Physicians Poster Sessions. Bone Marrow Transplant. 2018;53(Suppl 1):145-805. doi:10.1038/s41409-018-0354-7
PMC7162159:: Posters. Clin Microbiol Infect. 2007;13():S109-S608. doi:10.1111/j.1469-0691.2007.01733.x
PMC7159391:: Poster Session Abstracts. Pediatr Pulmonol. 2016;51(Suppl 45):S194-S485. doi:10.1002/ppul.23576
PMID31814251::"Son HF, Kim S, et al. Structural insight into bi-functional malonyl-CoA reductase.. Environ Microbiol. 2020;22(2):752-765. doi:3"
PMID31140857::"Yan CK, Wang WX, et al. BiRWDDA: A Novel Drug Repositioning Method Based on Multisimilarity Fusion.. J Comput Biol. 2019;26(11):1230-1242. doi:3"
PMID32124202::"de Santana Miglionico MT, Costa LM, et al. A New Species of Eimeria Schneider, 1875 (Apicomplexa: Eimeriidae) from Myotis riparius Handley, 1960 (Chiroptera: Vespertilionidae) in the Atlantic Forest of Brazil, with a Checklist of Eimeria spp. Reported from Bats.. Acta Parasitol. 2020;():. doi:3"
PMID30594587::"Nwaru BI, Suzuki S, et al. Furry Animal Allergen Component Sensitization and Clinical Outcomes in Adult Asthma and Rhinitis.. J Allergy Clin Immunol Pract. 2019;7(4):1230-1238.e4. doi:3"
PMID31294543::"Krasnov AG, Koroleva MS, et al. Ab Initio and Experimental Insights on Structural, Electronic, Optical, and Magnetic Properties of Cr-Doped Bi<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>.. Inorg Chem. 2019;58(15):9904-9915. doi:3"
PMC6803354::"Chang LX, Bi WX, et al. A review of the genus Brachytrycherus Arrow (Coleoptera, Endomychidae) of mainland China with descriptions of three new species. Zookeys. 2019;880():85-112. doi:10.3897/zookeys.880.34712"
PMC7174415::"Colman DR, Lindsay MR, et al. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth. ISME J. 2020;14(5):1316-1331. doi:10.1038/s41396-020-0611-9"
PMC6567203::"Cui N, Wu Q, et al. Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy. Materials (Basel). 2019;12(10):1672. doi:10.3390/ma12101672"
PMC7005746::"Bavia L, Melanda FN, et al. Epidemiological study on dengue in southern Brazil under the perspective of climate and poverty. Sci Rep. 2020;10():2127. doi:10.1038/s41598-020-58542-1"
PMID29975639::"McAllister CT, Hnida JA, et al. A new coccidian parasite (Apicomplexa: Eimeriidae: Eimeria) from the southern black racer, Coluber constrictor priapus (Reptilia: Ophidia: Colubridae) from Arkansas, USA.. Acta Parasitol. 2018;63(3):558-562. doi:3"
PMID29798367::"Zhang K, Ma FR, et al. [Bone conduction in tympanosclerosis patients and its changes after surgery for tympanosclerosis].. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(16):1228-1230. doi:3"
PMC6877764:: Author Index. Stem Cells Transl Med. 2019;8(12):1343-1349. doi:10.1002/sctm.12641
PMC7182800::"Guerrero P, Zugasti I, et al. Effect of Fructose and Ascorbic Acid on the Performance of Cross-Linked Fish Gelatin Films. Polymers (Basel). 2020;12(3):570. doi:10.3390/polym12030570"
PMC7009322::"Ledet EM, Antonarakis ES, et al. Germline BLM mutations and metastatic prostate cancer. Prostate. 2019;80(2):235-237. doi:10.1002/pros.23924"
PMC6029798::"Chai S, Shi J, et al. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS One. 2018;13(7):e0199873. doi:10.1371/journal.pone.0199873"
PMID30637559::"Chaudhary A, Gupta A, et al. Molecular Genetic Studies on Myxobolus cylindricus and Henneguya mystasi (Myxosporea: Myxobolidae) Infecting Two Indian Fish Species, Channa gachua and Mystus vittatus, Respectively.. Acta Parasitol. 2019;64(1):129-137. doi:3"
PMC6471788::"Zhang G, Yuan Z, et al. A Novel and Practical Scheme for Resolving the Quality of Samples in Background Modeling. Sensors (Basel). 2019;19(6):1352. doi:10.3390/s19061352"
PMC6973112::"Jusys Z, Behm RJ The Effect of Anions and pH on the Activity and Selectivity of an Annealed Polycrystalline Au Film Electrode in the Oxygen Reduction Reaction‐Revisited. Chemphyschem. 2019;20(24):3276-3288. doi:10.1002/cphc.201900960"
PMC6404264::"Sundström C, Petersén E, et al. Identification and management of alcohol use and illicit substance use in outpatient psychiatric clinics in Sweden: a national survey of clinic directors and staff. Addict Sci Clin Pract. 2019;14():10. doi:10.1186/s13722-019-0140-x"
PMC6852714::"Wells JM, Xing D, et al. The matrikine acetyl-proline-glycine-proline and clinical features of COPD: findings from SPIROMICS. Respir Res. 2019;20():254. doi:10.1186/s12931-019-1230-8"
PMC6501949::"Angus C, Brown J, et al. Socioeconomic inequalities in the delivery of brief interventions for smoking and excessive drinking: findings from a cross-sectional household survey in England. BMJ Open. 2019;9(4):e023448. doi:10.1136/bmjopen-2018-023448"
PMC6329771::"Tang QJ, Lei HP, et al. Plasma miR-142 predicts major adverse cardiovascular events as an intermediate biomarker of dual antiplatelet therapy. Acta Pharmacol Sin. 2018;40(2):208-215. doi:10.1038/s41401-018-0041-7"
PMID28114015::"Jizhou Ma, Shuai Li, et al. Unsupervised Multi-Class Co-Segmentation via Joint-Cut Over $L_{1}$ -Manifold Hyper-Graph of Discriminative Image Regions.. IEEE Trans Image Process. 2017;26(3):1216-1230. doi:3"
PMC6450717::"Zhu XG, Puthenveedu SN, et al. CHP1 regulates compartmentalized glycerolipid synthesis by activating GPAT4. Mol Cell. 2019;74(1):45-58.e7. doi:10.1016/j.molcel.2019.01.037"
|
Ivermectin |
CC[C@H](C)[C@@H]1[C@H](CC[C@@]2(O1)C[C@@H]3C[C@H](O2)C/C=C(/[C@H]([C@H](/C=C/C=C/4\CO[C@H]5[C@@]4([C@@H](C=C([C@H]5O)C)C(=O)O3)O)C)O[C@H]6C[C@@H]([C@H]([C@@H](O6)C)O[C@H]7C[C@@H]([C@H]([C@@H](O7)C)O)OC)OC)\C)C |
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC7252514::"Magnus CJ, Lee PH, et al. Ultrapotent Chemogenetics for Research and Potential Clinical Applications. Science. 2019;364(6436):eaav5282. doi:10.1126/science.aav5282"
PMC7251046::"Rizzo E. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn Schmiedebergs Arch Pharmacol. 2020;():1-4. doi:10.1007/s00210-020-01902-5"
PMC7250542::"Rahman MT, Idid SZ Can Zn Be a Critical Element in COVID-19 Treatment?. Biol Trace Elem Res. 2020;():1-9. doi:10.1007/s12011-020-02194-9"
PMC7229600::"Campillo JT, Chesnais CB, et al. Individuals living in an onchocerciasis focus and treated three-monthly with ivermectin develop fewer new onchocercal nodules than individuals treated annually. Parasit Vectors. 2020;13():258. doi:10.1186/s13071-020-04126-x"
PMC7227221::"Botelho AF, Machado AM, et al. Fatal metaldehyde poisoning in a dog confirmed by gas chromatography. BMC Vet Res. 2020;16():139. doi:10.1186/s12917-020-02348-w"
PMC7245249::"Yang CW, Peng TT, et al. Repurposing old drugs as antiviral agents for coronaviruses. Biomed J. 2020;():. doi:10.1016/j.bj.2020.05.003"
PMC7245191::"Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020;():1-19. doi:10.1007/s10930-020-09901-4"
PMC7245183::Müller T. Therapien gegen COVID-19 — ein Update: SARS-CoV-2-Pandemie. MMW Fortschr Med. 2020;162(10):20-23. doi:10.1007/s15006-020-0505-9
PMC7243081::"Rappaz B, Jourdain P, et al. Image-Based Marker-Free Screening of GABAA Agonists, Antagonists, and Modulators. SLAS Discov. 2019;25(5):458-470. doi:10.1177/2472555219887142"
PMC7242962::"Horowitz RI, Freeman PR Three Novel Prevention, Diagnostic and Treatment Options for COVID-19 Urgently Necessitating Controlled Randomized Trials. Med Hypotheses. 2020;():109851. doi:10.1016/j.mehy.2020.109851"
PMC7232406::"Anasir MI, Ramanathan B, et al. Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses. 2020;12(4):367. doi:10.3390/v12040367"
PMC7227987::"ANUMOLU PD, GURRALA S, et al. Degradation Kinetics, In Vitro Dissolution Studies, and Quantification of Praziquantel, Anchored in Emission Intensity by Spectrofluorimetry. Turk J Pharm Sci. 2018;16(1):82-87. doi:10.4274/tjps.63634"
PMC7237624::"Kumar R, Gupta N, et al. Battling COVID-19: using old weapons for a new enemy. Trop Dis Travel Med Vaccines. 2020;6():6. doi:10.1186/s40794-020-00107-1"
PMC7237229::" Abstracts from the International Science Symposium on HIV and Infectious Diseases (ISSHID 2019): Infectious diseases: Chennai, India. 12-14 October 2019. BMC Infect Dis. 2020;20(Suppl 1):324. doi:10.1186/s12879-020-05038-y"
PMC7229487::"Penny MA, Camponovo F, et al. Future use-cases of vaccines in malaria control and elimination. Parasite Epidemiol Control. 2020;10():e00145. doi:10.1016/j.parepi.2020.e00145"
PMC7227770::"Triggle CR, Bansal D, et al. COVID-19: Learning from Lessons To Guide Treatment and Prevention Interventions. mSphere. 2020;5(3):e00317-20. doi:10.1128/mSphere.00317-20"
PMC7214622::"Soto P, Gaete PS, et al. Function of P2X4 Receptors Is Directly Modulated by a 1:1 Stoichiometric Interaction With 5-HT3A Receptors. Front Cell Neurosci. 2020;14():106. doi:10.3389/fncel.2020.00106"
PMC7229471::"Hassoun A, Thottacherry ED, et al. Utilizing tocilizumab for the treatment of cytokine release syndrome in COVID-19. J Clin Virol. 2020;():104443. doi:10.1016/j.jcv.2020.104443"
PMC7226805::Ke PY. Mitophagy in the Pathogenesis of Liver Diseases . Cells. 2020;9(4):831. doi:10.3390/cells9040831
PMC7215344::"Ji CW, Park YS, et al. Analyzing the Response Behavior of Lumbriculus variegatus (Oligochaeta: Lumbriculidae) to Different Concentrations of Copper Sulfate Based on Line Body Shape Detection and a Recurrent Self-Organizing Map. Int J Environ Res Public Health. 2020;17(8):2627. doi:10.3390/ijerph17082627"
PMID32266871::"Hassan A, Shaban N Onchocerciasis dynamics: modelling the effects of treatment, education and vector control.. J Biol Dyn. 2020;14(1):245-268. doi:3"
PMID32378737::"Schmith VD, Zhou JJ, et al. The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19.. Clin Pharmacol Ther. 2020;():. doi:3"
PMID32414398::"Campillo JT, Chesnais CB, et al. Individuals living in an onchocerciasis focus and treated three-monthly with ivermectin develop fewer new onchocercal nodules than individuals treated annually.. Parasit Vectors. 2020;13(1):258. doi:3"
PMID32458795::Wamae CN. Mass Drug Administration and Worms Experience in Africa: Envisage Repurposing Ivermectin for SARS-COV-2.. Am J Trop Med Hyg. 2020;():. doi:3
PMID32304335::"Xu Y, Zhang S, et al. Pharmacokinetics of extended-release ivermectin microspheres after oral administration to healthy pigs.. J Vet Pharmacol Ther. 2020;():. doi:3"
PMC7172803::"Bray M, Rayner C, et al. Ivermectin and COVID-19: a report in Antiviral Research, widespread interest, an FDA warning, two letters to the editor and the authors' responses. Antiviral Res. 2020;():104805. doi:10.1016/j.antiviral.2020.104805"
PMC7205794::"Chen L, Bi S, et al. Ivermectin suppresses tumour growth and metastasis through degradation of PAK1 in oesophageal squamous cell carcinoma. J Cell Mol Med. 2020;24(9):5387-5401. doi:10.1111/jcmm.15195"
PMID32436753::"Martinez JD, Soria Orozco M, et al. Oral ivermectin for the treatment of red scrotum syndrome.. J Dermatolog Treat. 2020;():1-6. doi:3"
PMC7168851::"Ayalew F, Atnafu DD, et al. Determinants of community-led ivermectin treatment adherence for onchocerciasis control in Western Ethiopia: a case-control study. Trop Med Health. 2020;48():22. doi:10.1186/s41182-020-00210-1"
PMID32421762::"Marks M, Gwyn S, et al. Impact of community treatment with ivermectin for the control of scabies on the prevalence of antibodies to Strongyloides stercoralis in children.. Clin Infect Dis. 2020;():. doi:3"
PMC7129059::"Caly L, Druce JD, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178():104787. doi:10.1016/j.antiviral.2020.104787"
PMC7179878::"Nodari R, Corbett Y, et al. Effects of combined drug treatments on Plasmodium falciparum: In vitro assays with doxycycline, ivermectin and efflux pump inhibitors. PLoS One. 2020;15(4):e0232171. doi:10.1371/journal.pone.0232171"
PMID31960060::"Navarro M, Camprubí D, et al. Safety of high-dose ivermectin: a systematic review and meta-analysis.. J Antimicrob Chemother. 2020;75(4):827-834. doi:3"
PMID32364005::"Avcı B, Filazi A The effects of heat applications on macrocyclic lactone-structured antiparasitic drug residues in cows' milk.. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020;():1-11. doi:3"
PMC7157533::"Mandro M, Siewe Fodjo JN, et al. Single versus Multiple Dose Ivermectin Regimen in Onchocerciasis-Infected Persons with Epilepsy Treated with Phenobarbital: A Randomized Clinical Trial in the Democratic Republic of Congo. Pathogens. 2020;9(3):205. doi:10.3390/pathogens9030205"
PMC7175902::"Choudhary R, Sharma AK Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect. 2020;35():100684. doi:10.1016/j.nmni.2020.100684"
PMID32259680::"Barrón-Bravo OG, Hernández-Marín JA, et al. Susceptibility of entomopathogenic nematodes to ivermectin and thiabendazole.. Chemosphere. 2020;253():126658. doi:3"
PMID32383287::"Komoda M, Yamaguchi S, et al. Efficacy and safety of a combination regimen of phenothrin and ivermectin lotion in patients with head lice in Okinawa, Japan.. J Dermatol. 2020;():. doi:3"
|
NEU-4995 |
CN1C=C(C=N1)C1=C2C=C(NC2=NC=C1)C1=CC=C(CN2CCCCC2)C=C1 |
|
PMC7162159:: Posters. Clin Microbiol Infect. 2007;13():S109-S608. doi:10.1111/j.1469-0691.2007.01733.x
PMC6935129::"Yuan W, Goldstein LD, et al. S100a4 upregulation in Pik3caH1047R;Trp53R270H;MMTV-Cre-driven mammary tumors promotes metastasis. Breast Cancer Res. 2019;21():152. doi:10.1186/s13058-019-1238-5"
PMC6844576::"Alexander SP, Fabbro D, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. Br J Pharmacol. 2019;176(Suppl 1):S247-S296. doi:10.1111/bph.14751"
PMC6355332::"Zhang R, Billingsley MM, et al. Biomaterials for vaccine-based cancer immunotherapy. J Control Release. 2018;292():256-276. doi:10.1016/j.jconrel.2018.10.008"
PMC6158152::"Temian DC, Pop LA, et al. The Epigenetics of Triple-Negative and Basal-Like Breast Cancer: Current Knowledge. J Breast Cancer. 2018;21(3):233-243. doi:10.4048/jbc.2018.21.e41"
PMC6110523::"Guo J, Collins S, et al. Identification of a Water-Coordinating HER2 Inhibitor by Virtual Screening Using Similarity-Based Scoring. Biochemistry. 2018;57(32):4934-4951. doi:10.1021/acs.biochem.8b00524"
PMC6128263::"Goins CM, Sudasinghe TD, et al. Characterization of Tetrahydrolipstatin and Stereoderivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases. Biochemistry. 2018;57(16):2383-2393. doi:10.1021/acs.biochem.8b00152"
PMC6192518::"Pedley AM, Karras GI, et al. Role of HSP90 in the Regulation of de Novo Purine Biosynthesis. Biochemistry. 2018;57(23):3217-3221. doi:10.1021/acs.biochem.8b00140"
PMC5911193::"Jhaveri A, Deshpande P, et al. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277():89-101. doi:10.1016/j.jconrel.2018.03.006"
PMC5825283::"Wang CE, Yumul RC, et al. Junction opener protein increases nanoparticle accumulation in solid tumors. J Control Release. 2018;272():9-16. doi:10.1016/j.jconrel.2017.12.032"
PMC5807213::"Sims JD, Taguiam JM, et al. Resistance to receptor-blocking therapies primes tumors as targets for HER3-homing nanobiologics. J Control Release. 2017;271():127-138. doi:10.1016/j.jconrel.2017.12.024"
PMC5819600::"Sharma S, Mann AP, et al. Vascular changes in tumors resistant to a vascular disrupting nanoparticle treatment. J Control Release. 2017;268():49-56. doi:10.1016/j.jconrel.2017.10.006"
PMC5723529::"Appelbe OK, Moynihan KD, et al. Radiation-enhanced delivery of systemically administered amphiphilic-CpG oligodeoxynucleotide. J Control Release. 2017;266():248-255. doi:10.1016/j.jconrel.2017.09.043"
PMC5632592::"Soni KS, Lei F, et al. Tuning polypeptide-based micellar carrier for efficient combination therapy of ErbB2-positive breast cancer. J Control Release. 2017;264():276-287. doi:10.1016/j.jconrel.2017.08.038"
PMC5488751::"Hodgins NO, Al-Jamal WT, et al. Investigating in vitro and in vivo αvβ6 integrin receptor-targeting liposomal alendronate for combinatory γδ T cell immunotherapy. J Control Release. 2017;256():141-152. doi:10.1016/j.jconrel.2017.04.025"
PMC5537999::"Agrain FA, Chamorro ML, et al. A comprehensive guide to the Argentinian case-bearer beetle fauna (Coleoptera, Chrysomelidae, Camptosomata). Zookeys. 2017;(677):11-88. doi:10.3897/zookeys.677.10778"
PMC5414047::"Xie F, Jin K, et al. FAF1 phosphorylation by AKT accumulates TGF-β type II receptor and drives breast cancer metastasis. Nat Commun. 2017;8():15021. doi:10.1038/ncomms15021"
PMC5545100::"Fite BZ, Kheirolomoom A, et al. Dynamic Contrast Enhanced MRI Detects Changes in Vascular Transport Rate Constants Following Treatment with Thermally-Sensitive Liposomal Doxorubicin. J Control Release. 2017;256():203-213. doi:10.1016/j.jconrel.2017.04.007"
PMC5521020::"Woldring DR, Holec PV, et al. A gradient of sitewise diversity promotes evolutionary fitness for binder discovery in a three-helix bundle protein scaffold. Biochemistry. 2017;56(11):1656-1671. doi:10.1021/acs.biochem.6b01142"
PMC5123407::"Crisà A, Ferrè F, et al. RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk. BMC Vet Res. 2016;12():264. doi:10.1186/s12917-016-0881-7"
PMID32276005::"Kim B, Shin J, et al. Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2-positive breast cancer cells to achieve enhanced in vivo efficacy.. J Control Release. 2020;322():530-541. doi:3"
PMID30999007::"Zamani P, Navashenaq JG, et al. MPL nano-liposomal vaccine containing P5 HER2/neu-derived peptide pulsed PADRE as an effective vaccine in a mice TUBO model of breast cancer.. J Control Release. 2019;303():223-236. doi:3"
PMID30098033::"Neu D, Nawara G, et al. First Successful Mechanical Splint for Obstructive Sleep Apnea With an Orally Administrable Pharyngeal Stenting Device.. Laryngoscope. 2019;129(8):1945-1948. doi:3"
PMID31301340::"Tucci ST, Kheirolomoom A, et al. Tumor-specific delivery of gemcitabine with activatable liposomes.. J Control Release. 2019;309():277-288. doi:3"
PMID27773734::"Deshantri AK, Kooijmans SA, et al. Liposomal prednisolone inhibits tumor growth in a spontaneous mouse mammary carcinoma model.. J Control Release. 2016;243():243-249. doi:3"
PMC6912753::"Puglisi S, Calabrese A, et al. Mitotane Concentrations Influence the Risk of Recurrence in Adrenocortical Carcinoma Patients on Adjuvant Treatment. J Clin Med. 2019;8(11):1850. doi:10.3390/jcm8111850"
PMID22385253::"Beevers AJ, Nash A, et al. Effects of the oncogenic V(664)E mutation on membrane insertion, structure, and sequence-dependent interactions of the Neu transmembrane domain in micelles and model membranes: an integrated biophysical and simulation study.. Biochemistry. 2012;51(12):2558-68. doi:3"
PMID24637464::"Bull-Hansen B, Cao Y, et al. Photochemical activation of the recombinant HER2-targeted fusion toxin MH3-B1/rGel; Impact of HER2 expression on treatment outcome.. J Control Release. 2014;182():58-66. doi:3"
PMC4944389::"Tan JK, Pham B, et al. Microbubbles and ultrasound increase intraventricular polyplex gene transfer to the brain. J Control Release. 2016;231():86-93. doi:10.1016/j.jconrel.2016.02.003"
PMC4668934::"Choi JW, Lee YS, et al. Polymeric oncolytic adenovirus for cancer gene therapy. J Control Release. 2015;219():181-191. doi:10.1016/j.jconrel.2015.10.009"
PMC3971991::"Ding H, Helguera G, et al. Polymalic acid nanobioconjugate for simultaneous inhibition of tumor growth and immunostimulation in HER2/neu-positive breast cancer. J Control Release. 2013;171(3):322-329. doi:10.1016/j.jconrel.2013.06.001"
PMID20180588::"Beevers AJ, Damianoglou A, et al. Sequence-dependent oligomerization of the Neu transmembrane domain suggests inhibition of ""conformational switching"" by an oncogenic mutant.. Biochemistry. 2010;49(13):2811-20. doi:3"
PMC4144707::"Tamagaki H, Furukawa Y, et al. Coupling of Transmembrane Helix Orientation To Membrane Release of the Juxtamembrane Region in FGFR3. Biochemistry. 2014;53(30):5000-5007. doi:10.1021/bi500327q"
PMID21959118::"Elsadek B, Kratz F Impact of albumin on drug delivery--new applications on the horizon.. J Control Release. 2012;157(1):4-28. doi:3"
PMC4873102::"Morgan A, Sepuru KM, et al. Flexible Linker Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A. Biochemistry. 2015;54(32):5113-5119. doi:10.1021/acs.biochem.5b00253"
PMID21675735::"Sandbhor MS, Soya N, et al. Substrate recognition of the membrane-associated sialidase NEU3 requires a hydrophobic aglycone.. Biochemistry. 2011;50(32):6753-62. doi:3"
PMID19688857::"Huang CC, Lee TJ, et al. Desmoglein 3 is overexpressed in inverted papilloma and squamous cell carcinoma of sinonasal cavity.. Laryngoscope. 2010;120(1):26-9. doi:3"
PMC6986875::"Guerin MV, Finisguerra V, et al. Preclinical murine tumor models: a structural and functional perspective. eLife. 2020;9():e50740. doi:10.7554/eLife.50740"
PMID17897749::"Neu M, Germershaus O, et al. Bioreversibly crosslinked polyplexes of PEI and high molecular weight PEG show extended circulation times in vivo.. J Control Release. 2007;124(1-2):69-80. doi:3"
PMID17316863::"Neu M, Germershaus O, et al. Crosslinked nanocarriers based upon poly(ethylene imine) for systemic plasmid delivery: in vitro characterization and in vivo studies in mice.. J Control Release. 2007;118(3):370-80. doi:3"
PMID17854941::"Jung Y, Park HJ, et al. Retargeting of adenoviral gene delivery via Herceptin-PEG-adenovirus conjugates to breast cancer cells.. J Control Release. 2007;123(2):164-71. doi:3"
|
ELQ300 |
|
|
PMC6941357::"Charman SA, Andreu A, et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J. 2020;19():1. doi:10.1186/s12936-019-3075-5"
PMC6004454::"Lane KD, Mu J, et al. Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors. Proc Natl Acad Sci U S A. 2018;115(24):6285-6290. doi:10.1073/pnas.1804492115"
PMC5732164::"Dechering KJ, Duerr HP, et al. Modelling mosquito infection at natural parasite densities identifies drugs targeting EF2, PI4K or ATP4 as key candidates for interrupting malaria transmission. Sci Rep. 2017;7():17680. doi:10.1038/s41598-017-16671-0"
PMC5720825::"Shah-Simpson S, Lentini G, et al. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathog. 2017;13(11):e1006747. doi:10.1371/journal.ppat.1006747"
PMC4890880::"Swann J, Corey V, et al. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infect Dis. 2016;2(4):281-293. doi:10.1021/acsinfecdis.5b00143"
PMID25323622::"Kumar S, Kumari R, et al. New insight-guided approaches to detect, cure, prevent and eliminate malaria.. Protoplasma. 2015;252(3):717-53. doi:3"
|
MMV666080 |
OC1=C2N=CC=CC2=CC=C1C(NC(=O)C1=CC=CC=C1)C1=CC=CC=C1 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5964475::"CHARLTON RL, ROSSI-BERGMANN B, et al. Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art. Parasitology. 2017;145(2):219-236. doi:10.1017/S0031182017000993"
PMC5298231::"Hapuarachchi SV, Cobbold SA, et al. The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens. PLoS Pathog. 2017;13(2):e1006180. doi:10.1371/journal.ppat.1006180"
PMC4751939::"Khraiwesh M, Leed S, et al. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box against Intracellular Leishmania major Amastigotes. Am J Trop Med Hyg. 2016;94(2):340-347. doi:10.4269/ajtmh.15-0448"
PMC4847003::"Sykes ML, Avery VM Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes. Int J Parasitol Drugs Drug Resist. 2015;5(3):215-228. doi:10.1016/j.ijpddr.2015.10.001"
|
OSM-S-106 |
NC1=C2C(C=C(C3=CC=CC(S(=O)(N)=O)=C3)S2)=NC=N1 |
|
PMC7222540::"Liu B, Widener M, et al. Association between time-weighted activity space-based exposures to fast food outlets and fast food consumption among young adults in urban Canada. Int J Behav Nutr Phys Act. 2020;17():62. doi:10.1186/s12966-020-00967-y"
PMC7243233::"Fonseca LM, Parreiras LS, et al. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Biotechnol Biofuels. 2020;13():93. doi:10.1186/s13068-020-01732-w"
PMC7083484::"Adams KP, Adu‐Afarwuah S, et al. The impact of maternal supplementation during pregnancy and the first 6 months postpartum on the growth status of the next child born after the intervention period: Follow‐up results from Bangladesh and Ghana. Matern Child Nutr. 2020;16(2):e12927. doi:10.1111/mcn.12927"
PMC7213980::"Schiffer JA, Servello FA, et al. Caenorhabditis elegans processes sensory information to choose between freeloading and self-defense strategies. eLife. 2020;9():e56186. doi:10.7554/eLife.56186"
PMC7213928::"Distenhreft JI, Vianna JG, et al. The role of urea-induced osmotic diuresis and hypernatremia in a critically ill patient: case report and literature review. J Bras Nefrol. 2019;42(1):106-112. doi:10.1590/2175-8239-JBN-2018-0226"
PMC7165548:: Posters. Glia. 2009;57(Suppl ):S26-S171. doi:10.1002/glia.20915
PMC7167527::Caquet R. 250 examens de laboratoire en pratique médicale courante. 250 Examens de Laboratoire. 2019;():9-455. doi:10.1016/B978-2-294-76426-4.00002-X
PMC7143496::"Wang W, Samat A, et al. Spatio-Temporal Variations of Satellite-Based PM2.5 Concentrations and Its Determinants in Xinjiang, Northwest of China. Int J Environ Res Public Health. 2020;17(6):2157. doi:10.3390/ijerph17062157"
PMC7141210::"Behnke J, Kremer S, et al. MSC Based Therapies—New Perspectives for the Injured Lung. J Clin Med. 2020;9(3):682. doi:10.3390/jcm9030682"
PMC7118821::"Chen Y, Fan Z, et al. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res Ther. 2020;11():144. doi:10.1186/s13287-020-01650-6"
PMC7103182:: Oral Free Paper Sessions. Virchows Arch. 2016;469(Suppl 1):1-346. doi:10.1007/s00428-016-1997-7
PMC7101156::"Guillon A, Arafa EI, et al. Pneumonia recovery reprograms the alveolar macrophage pool. JCI Insight. 2020;5(4):e133042. doi:10.1172/jci.insight.133042"
PMC7089774::"Borrelli MR, Hu MS, et al. Macrophage Transplantation Fails to Improve Repair of Critical-Sized Calvarial Defects. J Craniofac Surg. 2019;30(8):2640-2645. doi:10.1097/SCS.0000000000005797"
PMC7232114::"Watanabe T, Tsuchiya A, et al. Development of a non-alcoholic steatohepatitis model with rapid accumulation of fibrosis, and its treatment using mesenchymal stem cells and their small extracellular vesicles. Regen Ther. 2020;14():252-261. doi:10.1016/j.reth.2020.03.012"
PMC7212516:: 2020 CIS Annual Meeting: Immune Deficiency & Dysregulation North American Conference. J Clin Immunol. 2020;():1-163. doi:10.1007/s10875-020-00764-z
PMC7176694::"Koks EE, Haer. T A high-resolution wind damage model for Europe. Sci Rep. 2020;10():6866. doi:10.1038/s41598-020-63580-w"
PMC7072680::"Omokehinde T, Johnson RW GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel). 2020;12(2):326. doi:10.3390/cancers12020326"
PMC6928954::"Tampubolon H, Yang CL, et al. Optimized CapsNet for Traffic Jam Speed Prediction Using Mobile Sensor Data under Urban Swarming Transportation. Sensors (Basel). 2019;19(23):5277. doi:10.3390/s19235277"
PMC7012943::"Mommert S, Hüer M, et al. Histamine up‐regulates oncostatin M expression in human M1 macrophages. Br J Pharmacol. 2019;177(3):600-613. doi:10.1111/bph.14796"
PMC6691365::"Grossner TL, Haberkorn U, et al. 99mTc-Hydroxydiphosphonate quantification of extracellular matrix mineralization in 3D human mesenchymal stem cell cultures. Bone Joint Res. 2019;8(7):333-341. doi:10.1302/2046-3758.87.BJR-2017-0248.R1"
PMC6873576::"Sirikaew N, Chomdej S, et al. Proinflammatory cytokines and lipopolysaccharides up regulate MMP-3 and MMP-13 production in Asian elephant (Elephas maximus) chondrocytes: attenuation by anti-arthritic agents. BMC Vet Res. 2019;15():419. doi:10.1186/s12917-019-2170-8"
PMC7117774::"Longbottom J, Krause A, et al. Quantifying geographic accessibility to improve efficiency of entomological monitoring. PLoS Negl Trop Dis. 2020;14(3):e0008096. doi:10.1371/journal.pntd.0008096"
PMC6798793::"Minar P, Lehn C, et al. Elevated Pretreatment Plasma Oncostatin M Is Associated With Poor Biochemical Response to Infliximab. Crohns Colitis 360. 2019;1(3):otz026. doi:10.1093/crocol/otz026"
PMC7010772::"Wang CH, Chang CH, et al. The novel application of cordycepin in maintaining stem cell pluripotency and increasing iPS cell generation efficiency. Sci Rep. 2020;10():2187. doi:10.1038/s41598-020-59154-5"
PMC6597788::"Abe H, Takeda N, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nat Commun. 2019;10():2824. doi:10.1038/s41467-019-10859-w"
PMC6816223::"Hsu T, Nguyen-Tran HH, et al. Active roles of dysfunctional vascular endothelium in fibrosis and cancer. J Biomed Sci. 2019;26():86. doi:10.1186/s12929-019-0580-3"
PMC7142857::"Ramacher MO, Karl M Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas. Int J Environ Res Public Health. 2020;17(6):2099. doi:10.3390/ijerph17062099"
PMC6457304::"Zhang Y, Chen J, et al. Prognostic Significance of MicroRNAs in Glioma: A Systematic Review and Meta-Analysis. Biomed Res Int. 2019;2019():4015969. doi:10.1155/2019/4015969"
PMC6954137::"Owca TJ, Kay ML, et al. Use of pre-industrial baselines to monitor anthropogenic enrichment of metals concentrations in recently deposited sediment of floodplain lakes in the Peace-Athabasca Delta (Alberta, Canada). Environ Monit Assess. 2020;192(2):106. doi:10.1007/s10661-020-8067-y"
PMC6885715::"Varaa N PhD, Azandeh S PhD, et al. Wharton’s Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review . Iran J Med Sci. 2019;44(6):437-448. doi:10.30476/ijms.2019.44952"
PMC7160967::"Ohashi Y, Tsunoda N, et al. Hypopituitarism manifesting after invasive dental treatment in a patient with carcinoma of the tongue: a case report. BMC Oral Health. 2020;20():106. doi:10.1186/s12903-020-01082-x"
PMC6895889::"Polak KL, Chernosky NM, et al. Balancing STAT Activity as a Therapeutic Strategy. Cancers (Basel). 2019;11(11):1716. doi:10.3390/cancers11111716"
PMC6973314::"Verma S, Kang AK, et al. BST2 regulates interferon gamma-dependent decrease in invasion of HTR-8/SVneo cells via STAT1 and AKT signaling pathways and expression of E-cadherin. Cell Adh Migr. 2020;14(1):24-41. doi:10.1080/19336918.2019.1710024"
PMC6812213::"Jackson ML, Ruppert KA, et al. Clinical parameters affecting multipotent adult progenitor cells in vitro. Heliyon. 2019;5(10):e02532. doi:10.1016/j.heliyon.2019.e02532"
PMC6529849::West NR. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front Immunol. 2019;10():1093. doi:10.3389/fimmu.2019.01093
PMC6716086::"Li S, Huang SQ, et al. Derivation and applications of human hepatocyte-like cells. World J Stem Cells. 2019;11(8):535-547. doi:10.4252/wjsc.v11.i8.535"
PMC6406700::"Botelho FM, Rodrigues R, et al. Extracellular Matrix and Fibrocyte Accumulation in BALB/c Mouse Lung upon Transient Overexpression of Oncostatin M. Cells. 2019;8(2):126. doi:10.3390/cells8020126"
PMC7194476::"Porter RJ, Kalla R, et al. Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F1000Res. 2020;9():F1000 Faculty Rev-294. doi:10.12688/f1000research.20805.1"
PMC7216541::"Sinkeviciute D, Aspberg A, et al. Characterization of the interleukin-17 effect on articular cartilage in a translational model: an explorative study. BMC Rheumatol. 2020;4():30. doi:10.1186/s41927-020-00122-x"
PMC7218268::"Laggner M, Copic D, et al. Therapeutic potential of lipids obtained from γ-irradiated PBMCs in dendritic cell-mediated skin inflammation. EBioMedicine. 2020;55():102774. doi:10.1016/j.ebiom.2020.102774"
PMC7169131:: POSTER PRESENTATION. Respirology. 2016;21(Suppl 3):80-213. doi:10.1111/resp.12939_15
PMC7216545::"Ocholla IA, Agutu NO, et al. Geographical accessibility in assessing bypassing behaviour for inpatient neonatal care, Bungoma County-Kenya. BMC Pregnancy Childbirth. 2020;20():287. doi:10.1186/s12884-020-02977-x"
PMC7212470::"Barnhoorn MC, Plug L, et al. Mesenchymal Stromal Cell–Derived Exosomes Contribute to Epithelial Regeneration in Experimental Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol. 2020;9(4):715-717.e8. doi:10.1016/j.jcmgh.2020.01.007"
PMC6541631::"Waters MR, Gupta AS, et al. RelB acts as a molecular switch driving chronic inflammation in glioblastoma multiforme. Oncogenesis. 2019;8(6):37. doi:10.1038/s41389-019-0146-y"
|
GNF-Pf-5666 |
CN1C(NNC(=S)N)C(NNC(=S)N)N(C)C1=O |
|
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
artemether |
CO[C@H]1O[C@@H]2O[C@@]3(C)CC[C@H]4[C@H](C)CC[C@@H]([C@H]1C)[C@@]24OO3 |
|
PMID32359426::"Vanaerschot M, Murithi JM, et al. Inhibition of Resistance-Refractory P. Falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chem Biol. 2020 ;S2451-9456(20)30115-X. doi: 10.1016/j.chembiol.2020.04.001."
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
GNF-Pf-4492 |
CN1N=C(C(=C1NC(=O)NC1=CC(F)=C(F)C=C1)C1=CC=C(Br)C=C1)C(F)(F)F |
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC6888673::"Capela R, Moreira R, et al. An Overview of Drug Resistance in Protozoal Diseases. Int J Mol Sci. 2019;20(22):5748. doi:10.3390/ijms20225748"
|
MMV1079594 |
OC1=CC=CC=C1NC(=O)C1=CC=C(CN2C=CN=C2)C=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV011772 |
Fc1cccc(NNC(=O)C(F)(F)F)n1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV665939 |
FC1=CC=C(C=C1)C(=O)NC1=C(SC=C1)C(=O)NC1CCCCC1 |
PF3D7_0319700::ABC+transporter%2C+putative::SNP::Pf3D7_03_v3::827475::Y2079C
PF3D7_0319700::ABC+transporter%2C+putative::SNP::Pf3D7_03_v3::827778::R2180P
PF3D7_0500400::rifin+%28RIF%29::SNP::Pf3D7_05_v3::33671::P170
PF3D7_0613800::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_06_v3::566727::QMEGDNEMEGDNE197Q
PF3D7_1300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_13_v3::28786::*2163*YI
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
MMV1029508 |
CC1=CSC(CNC2=C3C(C)=C(C)SC3=NC(=N2)C2=CN=CC=C2)=N1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV020750 |
COC1=CC(=CC(OC)=C1O)C1=NC(=C(N1)C1=CC=CC=C1)C1=CC=CC=C1 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5939537::"Escotte-Binet S, Huguenin A, et al. Metallopeptidases of Toxoplasma gondii: in silico identification and gene expression. Parasite. 2018;25():26. doi:10.1051/parasite/2018025"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC4486462::"Fong KY, Sandlin RD, et al. Identification of β-hematin inhibitors in the MMV Malaria Box. Int J Parasitol Drugs Drug Resist. 2015;5(3):84-91. doi:10.1016/j.ijpddr.2015.05.003"
PMC4336144::"Paiardini A, Bamert RS, et al. Screening the Medicines for Malaria Venture ""Malaria Box"" against the Plasmodium falciparum Aminopeptidases, M1, M17 and M18. PLoS One. 2015;10(2):e0115859. doi:10.1371/journal.pone.0115859"
|
MMV000570 |
CCc1ccc(cc1)Nc2cc(c3ccc(cc3n2)O)C |
::::SNP::Pf3D7_09_v3::1204491::E894K
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5114727::"Fletcher S, Lucantoni L, et al. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway. Parasit Vectors. 2016;9():589. doi:10.1186/s13071-016-1860-3"
PMC5075070::"Creek DJ, Chua HH, et al. Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrob Agents Chemother. 2016;60(11):6650-6663. doi:10.1128/AAC.01226-16"
PMC4168161::"Fletcher S, Avery VM A novel approach for the discovery of chemically diverse anti-malarial compounds targeting the Plasmodium falciparum Coenzyme A synthesis pathway. Malar J. 2014;13():343. doi:10.1186/1475-2875-13-343"
|
BI-1950 |
C[C@H](NC(=O)C1=CN=C2N(C(=O)[C@@](C)(CC3=CC=C(C=C3)C#N)N12)C1=CC(Cl)=C(F)C(Cl)=C1)C(=O)NC1(CC1)C1=NC=CC=C1 |
|
|
MMV000787 |
CCCOCC1=C2C=CC=NC2=C(O)C(CN2CCN(CC2)C2=CC(Cl)=CC=C2)=C1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7145303::"Müller J, Winzer PA, et al. In Vitro Activities of MMV Malaria Box Compounds against the Apicomplexan Parasite Neospora caninum, the Causative Agent of Neosporosis in Animals. Molecules. 2020;25(6):1460. doi:10.3390/molecules25061460"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC4639769::"Lucantoni L, Silvestrini F, et al. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep. 2015;5():16414. doi:10.1038/srep16414"
|
MMV020746 |
Cc1ccc(Oc2ncccc2C(=O)Nc2cccc3cccnc23)c(C)c1 |
PF3D7_0319700::ABC+transporter%2C+putative::SNP::Pf3D7_03_v3::823307::L690I
PF3D7_0319700::ABC+transporter%2C+putative::SNP::Pf3D7_03_v3::827777::R2180G
PF3D7_0319700::ABC+transporter%2C+putative::SNP::Pf3D7_03_v3::827778::R2180P
PF3D7_1114900::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_11_v3::563740::C575F
PF3D7_0521500::ribosomal+large+subunit+pseudouridylate+synthase%2C+putative::INDEL::Pf3D7_05_v3::878541::
PF3D7_1107800::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_11_v3::330085::NN1755-
PF3D7_1430100::phosphotyrosyl+phosphatase+activator%2C+putative::INDEL::Pf3D7_14_v3::1186374::
PF3D7_1441300::serine%2Fthreonine+protein+kinase%2C+putative::INDEL::Pf3D7_14_v3::1687597::-1729?
PF3D7_1474400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::3048614::D1042DN
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
GNF452 |
NCC(N1CCN2C(C1)=NC(C3=CC=C(F)C=C3)=C2NC4=CC=C(Cl)C(F)=C4)=O |
PF3D7_0321900::cyclic amine resistance locus protein::SNP::Pf3D7_03_v3::923216::M81I
PF3D7_0321900::cyclic amine resistance locus protein::SNP::Pf3D7_03_v3::925589::L830V
PF3D7_0411900::DNA polymerase alpha catalytic subunit A::SNP::Pf3D7_04_v3::531440::V891
PF3D7_0928700::"conserved Plasmodium protein, unknown function"::INDEL::Pf3D7_09_v3::1152783::DIKTYDGIKTYD779-
PF3D7_0614200::"cytosolic Fe-S cluster assembly factor NAR1, putative"::SNP::Pf3D7_06_v3::594251::D552N
PF3D7_0712800::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_07_v3::588531::L131
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC4135840::"Kuhen KL, Chatterjee AK, et al. KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrob Agents Chemother. 2014;58(9):5060-5067. doi:10.1128/AAC.02727-13"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC4958248::"LaMonte G, Lim MY, et al. Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance. mBio. 2016;7(4):e00696-16. doi:10.1128/mBio.00696-16"
|
MMV028038 |
CC(C)C1=CC=CC(=C1)C(NC(=O)C1CC2=C(CN1C(=O)C1=CC=CC(=C1)N1CCOCC1)C=CC=C2)C1CCCC1 |
PF3D7_0107500::lipid%2Fsterol%3AH++symporter::SNP::Pf3D7_01_v3::305635::A1208E
PF3D7_0107500::lipid%2Fsterol%3AH++symporter::SNP::Pf3D7_01_v3::308064::M398I
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29503::T266
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29510::R269
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29512::R269S
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29514::E270A
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29515::E270D
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29518::T271
PF3D7_0400100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::29530::A275
PF3D7_0628200::protein+kinase+PK4+%28PK4%29::SNP::Pf3D7_06_v3::1164007::G1382
PF3D7_1028300::nucleolar+preribosomal+assembly+protein%2C+putative::SNP::Pf3D7_10_v3::1168453::H169N
PF3D7_1354900::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::2185145::N370I
PF3D7_1414700::ubiquitin+carboxyl-terminal+hydrolase%2C+putative::SNP::Pf3D7_14_v3::595097::A684T
PF3D7_0419900::phosphatidylinositol+4-kinase%2C+putative::INDEL::Pf3D7_04_v3::883439::DVIKNKNG1704D
PF3D7_0500100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_05_v3::27506::P1892PSGNNTTA
PF3D7_0935200::sec-1+family+protein::INDEL::Pf3D7_09_v3::1371051::D329EMN
PF3D7_1223400::phospholipid-transporting+ATPase%2C+putative::INDEL::Pf3D7_12_v3::942480::DDEEDDDEE453-
|
PMC6424564::"Istvan ES, Das S, et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife. 2019;8():e40529. doi:10.7554/eLife.40529"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC6393310::"Huckaby AC, Granum CS, et al. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res. 2018;47(4):1615-1627. doi:10.1093/nar/gky1268"
|
MMV1490583 |
C1=CC(=C(C=C1Cl)C2=CC=C(CNCCN3CCNCC3)O2)Cl |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV665928 |
CCC(C)NCC(O)(C1=CC=C(Cl)C=C1)C1=CC=C(Cl)C=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
AZ412 |
FC1=C(C2CC2)C=C(NC3=NC=C(N4CCN(C)[C@H](C)C4)C(NC5=NN(C)C(C)=C5)=N3)N=C1C |
|
PMC5075069::"Allman EL, Painter HJ, et al. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways. Antimicrob Agents Chemother. 2016;60(11):6635-6649. doi:10.1128/AAC.01224-16"
PMC4774904::"Hemingway J, Shretta R, et al. Tools and Strategies for Malaria Control and Elimination: What Do We Need to Achieve a Grand Convergence in Malaria?. PLoS Biol. 2016;14(3):e1002380. doi:10.1371/journal.pbio.1002380"
PMC93838::"Serrano M, Zilhão R, et al. A Bacillus subtilis Secreted Protein with a Role in Endospore Coat Assembly and Function. J Bacteriol. 1999;181(12):3632-3643. doi:"
PMC6093624::"Radke JB, Burrows JN, et al. Evaluation of current and emerging anti-malarial medicines for inhibition of Toxoplasma gondii growth in vitro. ACS Infect Dis. 2018;4(8):1264-1274. doi:10.1021/acsinfecdis.8b00113"
|
GNF707 |
O=C([C@@H](O)CC1=CC=CC=C1)N2CCN3C(C2)=NC(C4=CC=C(F)C=C4)=C3NC5=CC=C(C)C=C5 |
PF3D7_0103100::"vacuolar protein sorting-associated protein 51, putative"::SNP::Pf3D7_01_v3::136492::K922N
PF3D7_0223500::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_02_v3::918687::E1654
PF3D7_0223500::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_02_v3::918690::D1653E
PF3D7_0415300::cdc2-related protein kinase 3::SNP::Pf3D7_04_v3::685752::E1268D
PF3D7_0420700::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_04_v3::938750::F1042
PF3D7_0426000::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_04_v3::1173875::V1876
PF3D7_0533100::"erythrocyte membrane protein 1 (PfEMP1), pseudogene"::SNP::Pf3D7_05_v3::1337549::T1360
PF3D7_0614200::"cytosolic Fe-S cluster assembly factor NAR1, putative"::SNP::Pf3D7_06_v3::594251::D552N
PF3D7_0632500::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_06_v3::1354457::T3785N
PF3D7_0712300::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_07_v3::549420::V367
PF3D7_0712800::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_07_v3::588531::L131
PF3D7_0833000::rifin::SNP::Pf3D7_08_v3::1418117::A200E
PF3D7_0833000::rifin::SNP::Pf3D7_08_v3::1418119::F201V
PF3D7_0833000::rifin::SNP::Pf3D7_08_v3::1418120::F201C
PF3D7_0833000::rifin::SNP::Pf3D7_08_v3::1418121::F201L
PF3D7_0900600::rifin::SNP::Pf3D7_09_v3::46729::Q93E
PF3D7_0927200::"zinc finger protein, putative"::SNP::Pf3D7_09_v3::1110715::N981
PF3D7_1229100::multidrug resistance-associated protein 2::SNP::Pf3D7_12_v3::1196289::D976N
PF3D7_1255200::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_12_v3::2244377::R1529T
PF3D7_1300300::"erythrocyte membrane protein 1, PfEMP1"::SNP::Pf3D7_13_v3::37344::V2467I
PF3D7_1449400::"crossover junction endonuclease MUS81, putative"::SNP::Pf3D7_14_v3::2021188::H984N
PF3D7_0411900::DNA polymerase alpha catalytic subunit A::SNP::Pf3D7_04_v3::531440::V891
PF3D7_0321900::cyclic amine resistance locus protein::SNP::Pf3D7_03_v3::925589::L830V
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC4135840::"Kuhen KL, Chatterjee AK, et al. KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrob Agents Chemother. 2014;58(9):5060-5067. doi:10.1128/AAC.02727-13"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
|
Compound |
SMILES |
snp::gene name::snp::gene description::snp::mutation type::snp::chromosome::snp::position::snp::aa change
|
literature::ID::literature::Citation
|
MMV029272 |
ClC1=CC=C(NC(=O)NCC(CCCN2CCC(CC2)C2=CNC3=CC=CC=C23)C2=CC=CC=C2)C=C1Cl |
PF3D7_1116700::cathepsin+C%2C+homolog%2Cdipeptidyl+peptidase+1+%28DPAP1%29::SNP::Pf3D7_11_v3::631572::L437S
PF3D7_1116700::cathepsin+C%2C+homolog%2Cdipeptidyl+peptidase+1+%28DPAP1%29::SNP::Pf3D7_11_v3::631638::L415P
PF3D7_1116700::cathepsin+C%2C+homolog%2Cdipeptidyl+peptidase+1+%28DPAP1%29::SNP::Pf3D7_11_v3::632698::N62H
PF3D7_0622000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_06_v3::897515::
PF3D7_0928200::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_09_v3::1141021::NNN385-
PF3D7_1402700::pre-mRNA+splicing+factor%2C+putative::INDEL::Pf3D7_14_v3::97922::
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
GNF-Pf-5675 |
COC(OC)C(=NNC(=S)N)C |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
GNF-Pf-3891 |
CC1=NC(=C(O1)SCC1=CC=CC=C1)[P+](C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 |
|
|
MMV00017 |
CC(C)(C)NCc1cc(c2c(c1O)CCCC2)Nc3ccnc4c3ccc(c4)Cl |
|
|
Tryptanthrin |
O=C1c2nc3ccccc3c(=O)n2c2c1cccc2 |
|
PMC7230480::"Hsia CH, Jayakumar T, et al. Synthetic Ruthenium Complex TQ-6 Potently Recovers Cerebral Ischemic Stroke: Attenuation of Microglia and Platelet Activation. J Clin Med. 2020;9(4):996. doi:10.3390/jcm9040996"
PMC7175275::"Tsai YC, Lee CL, et al. Antiviral Action of Tryptanthrin Isolated from Strobilanthes cusia Leaf against Human Coronavirus NL63. Biomolecules. 2020;10(3):366. doi:10.3390/biom10030366"
PMC7144721::"Venugopala KN, Ramachandra P, et al. Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin -4-ones against Malaria Vector Anopheles arabiensis, In Silico ADMET Prediction and Molecular Target Investigation. Molecules. 2020;25(6):1316. doi:10.3390/molecules25061316"
PMC7126482::"Liau BC, Jong TT, et al. LC-APCI-MS method for detection and analysis of tryptanthrin, indigo, and indirubin in Daqingye and Banlangen. J Pharm Biomed Anal. 2006;43(1):346-351. doi:10.1016/j.jpba.2006.06.029"
PMC7123092::Teoh ES. Genus: Calanthe to Cyrtosia. Medicinal Orchids of Asia. 2015;():171-250. doi:10.1007/978-3-319-24274-3_9
PMC7104192::"Wang X, Xie Y, et al. Qualitative and quantitative analysis of glucosinolates and nucleosides in Radix Isatidis by HPLC and liquid chromatography tandem mass spectrometry. Acta Pharm Sin B. 2013;3(5):337-344. doi:10.1016/j.apsb.2013.08.002"
PMC7190535::"Mani JS, Johnson JB, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res. 2020;():197989. doi:10.1016/j.virusres.2020.197989"
PMC7166370:: Current literature in mass spectrometry. J Mass Spectrom. 2008;43(6):827-838. doi:10.1002/jms.1303
PMC7126534::"You WC, Lin WC, et al. Indigowood root extract protects hematopoietic cells, reduces tissue damage and modulates inflammatory cytokines after total-body irradiation: Does Indirubin play a role in radioprotection?. Phytomedicine. 2009;16(12):1105-1111. doi:10.1016/j.phymed.2009.05.011"
PMC7115206::"Jiang CT, Wu WF, et al. Modulators of microglia activation and polarization in ischemic stroke. Mol Med Rep. 2020;21(5):2006-2018. doi:10.3892/mmr.2020.11003"
PMC7114116::"Zhong Y, Yoshinaka Y, et al. Highly potent anti-HIV-1 activity isolated from fermented Polygonum tinctorium Aiton. Antiviral Res. 2005;66(2):119-128. doi:10.1016/j.antiviral.2005.02.003"
PMC7112370::"Du J, Wang B, et al. Extraction, characterization and bioactivities of novel purified polysaccharides from Baphicacanthis Cusiae Rhizoma et Radix. Int J Biol Macromol. 2016;93():879-888. doi:10.1016/j.ijbiomac.2016.09.055"
PMC7086134::
PMC7072689::"Oliva E, Mathiron D, et al. New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide Using Ball Milling. Biomolecules. 2020;10(2):339. doi:10.3390/biom10020339"
PMID32247733::"Li Y, Zhang S, et al. Synthesis of novel tryptanthrin derivatives as dual inhibitors of indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase.. Bioorg Med Chem Lett. 2020;30(11):127159. doi:3"
PMID32173427::"Cheng HM, Kuo YZ, et al. The anti-TH17 polarization effect of Indigo naturalis and tryptanthrin by differentially inhibiting cytokine expression.. J Ethnopharmacol. 2020;255():112760. doi:3"
PMID32357298::"Hao Y, Guo J, et al. Discovery of Tryptanthrins as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents.. J Agric Food Chem. 2020;68(20):5586-5595. doi:3"
PMC6985671::"Shankar G. M, Alex VV, et al. Pre‐clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif. 2019;53(1):e12710. doi:10.1111/cpr.12710"
PMID32455240::"Matveevskaya VV, Pavlov DI, et al. Arene-Ruthenium(II) Complexes Containing 11<i>H</i>-Indeno[1,2-<i>b</i>]quinoxalin-11-one Derivatives and Tryptanthrin-6-oxime: Synthesis, Characterization, Cytotoxicity, and Catalytic Transfer Hydrogenation of Aryl Ketones.. ACS Omega. 2020;5(19):11167-11179. doi:3"
PMID31825257::"Narendrakumar L, Theresa M, et al. Tryptanthrin, a potential biofilm inhibitor against toxigenic <i>Vibrio cholerae,</i> modulating the global quorum sensing regulator, LuxO.. Biofouling. 2019;35(10):1093-1103. doi:3"
PMID31647221::"Mexia N, Koutrakis S, et al. A Biomimetic, One-Step Transformation of Simple Indolic Compounds to <i>Malassezia</i>-Related Alkaloids with High AhR Potency and Efficacy.. Chem Res Toxicol. 2019;32(11):2238-2249. doi:3"
PMID32033881::"Ozawa K, Mori D, et al. Comparison of the anti-colitis activities of Qing Dai/Indigo Naturalis constituents in mice.. J Pharmacol Sci. 2020;142(4):148-156. doi:3"
PMID31549585::"Yang C, He B, et al. Nano-encapsulated tryptanthrin derivative for combined anticancer therapy via inhibiting indoleamine 2,3-dioxygenase and inducing immunogenic cell death.. Nanomedicine (Lond). 2019;14(18):2423-2440. doi:3"
PMC7002663::"Hesse-Macabata J, Morgner B, et al. Tryptanthrin promotes keratinocyte and fibroblast responses in vitro after infection with Trichophyton benhamiae DSM6916. Sci Rep. 2020;10():1863. doi:10.1038/s41598-020-58773-2"
PMID30557446::"Pedras MSC, Abdoli A, et al. Ecological Roles of Tryptanthrin, Indirubin and N-Formylanthranilic Acid in Isatis indigotica: Phytoalexins or Phytoanticipins?. Chem Biodivers. 2019;16(3):e1800579. doi:3"
PMID32108198::"Guo J, Hao Y, et al. Efficient synthesis of SCF<sub>3</sub>-substituted tryptanthrins by a radical tandem cyclization.. Org Biomol Chem. 2020;18(10):1994-2001. doi:3"
PMID30834838::"Duca G, Pogrebnoi S, et al. Tryptanthrin Analogues as Inhibitors of Enoyl-acyl Carrier Protein Reductase: Activity against Mycobacterium tuberculosis, Toxicity, Modeling of Enzyme Binding.. Curr Top Med Chem. 2019;19(8):609-619. doi:3"
PMC6261293::"Schepetkin IA, Khlebnikov AI, et al. Synthesis, Biological Evaluation, and Molecular Modeling of 11H-indeno[1,2-b]quinoxalin-11one Derivatives and Tryptanthrin-6-Oxime as c-Jun N-terminal Kinase Inhibitors. Eur J Med Chem. 2018;161():179-191. doi:10.1016/j.ejmech.2018.10.023"
PMID30088156::"Agafonova IG, Moskovkina TV Low-dose action of tryptanthrin and its derivatives against developing embryos of the sea urchin Strongylocentrotus intermedius.. Environ Monit Assess. 2018;190(9):502. doi:3"
PMID30321802::"Zhang S, Qi F, et al. Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives.. Eur J Med Chem. 2018;160():133-145. doi:3"
PMID30295480::"Garcellano RC, Moinuddin SGA, et al. Isolation of Tryptanthrin and Reassessment of Evidence for Its Isobaric Isostere Wrightiadione in Plants of the Wrightia Genus.. J Nat Prod. 2019;82(3):440-448. doi:3"
PMC7241045::"Matveevskaya VV, Pavlov DI, et al. Arene–Ruthenium(II) Complexes Containing 11H-Indeno[1,2-b]quinoxalin-11-one Derivatives and Tryptanthrin-6-oxime: Synthesis, Characterization, Cytotoxicity, and Catalytic Transfer Hydrogenation of Aryl Ketones. ACS Omega. 2020;5(19):11167-11179. doi:10.1021/acsomega.0c01204"
PMC7154893::"Speranza J, Miceli N, et al. Isatis tinctoria L. (Woad): A Review of Its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies. Plants (Basel). 2020;9(3):298. doi:10.3390/plants9030298"
PMC7151211::"Haider M, Abdin SM, et al. Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics. 2020;12(3):288. doi:10.3390/pharmaceutics12030288"
PMC7111722::"Cao YW, Qu RJ, et al. Untargeted liquid chromatography coupled with mass spectrometry reveals metabolic changes in nitrogen-deficient Isatis indigotica Fortune. Phytochemistry. 2019;166():112058. doi:10.1016/j.phytochem.2019.112058"
PMC7126793::"Hsuan SL, Chang SC, et al. The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus. J Ethnopharmacol. 2009;123(1):61-67. doi:10.1016/j.jep.2009.02.028"
PMID31580660::"Yang D, Zhang S, et al. <i>N</i>-Benzyl/Aryl Substituted Tryptanthrin as Dual Inhibitors of Indoleamine 2,3-Dioxygenase and Tryptophan 2,3-Dioxygenase.. J Med Chem. 2019;62(20):9161-9174. doi:3"
PMID31005035::"Chang HN, Yeh YC, et al. The anti-angiogenic effect of tryptanthrin is mediated by the inhibition of apelin promoter activity and shortened mRNA half-life in human vascular endothelial cells.. Phytomedicine. 2019;58():152879. doi:3"
PMC7156250::"Lee CL, Wang CM, et al. IL-17A inhibitions of indole alkaloids from traditional Chinese medicine Qing Dai. J Ethnopharmacol. 2020;255():112772. doi:10.1016/j.jep.2020.112772"
PMID31035058::"Nguyen TK, Marcelo P, et al. Metabolic markers for the yield of lipophilic indole alkaloids in dried woad leaves (Isatis tinctoria L.).. Phytochemistry. 2019;163():89-98. doi:3"
PMID31373432::"Jing D, Lu C, et al. Light-Driven Intramolecular C-N Cross-Coupling via a Long-Lived Photoactive Photoisomer Complex.. Angew Chem Int Ed Engl. 2019;58(41):14666-14672. doi:3"
|
AMG 925 |
C[C@H]1CC[C@@H](CC1)n1c2cnccc2c2cnc(Nc3ccc4CN(CCc4n3)C(=O)CO)nc12 |
|
|
GNF-Pf-3703 |
CC(=O)N(C1=CC=C(I)C=C1)C2=C(N3CCOCC3)C(=O)C4=CC=CC=C4C2=O |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV1458543 |
CC1=CC=NC2=NC(=NN12)C(=O)NC1=CC(=CC=C1N1CCCCCC1)C(F)(F)F |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV026596 |
Cl[H].Cl[H].CNCC1=CC=C2N=C(NC2=C1)C1=COC(CC2=C(OCC(C)C)C=CC(Cl)=C2)=N1 |
PF3D7_0205300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_02_v3::221176::
::::SNP::Pf3D7_05_v3::106031::
PF3D7_0523000::multidrug+resistance+protein+%28MDR1%29::SNP::Pf3D7_05_v3::960307::F806L
PF3D7_0532900::rifin+%28RIF%29::SNP::Pf3D7_05_v3::1327090::E206D
PF3D7_0532900::rifin+%28RIF%29::SNP::Pf3D7_05_v3::1327105::A211
::::SNP::Pf3D7_06_v3::29445::
::::SNP::Pf3D7_06_v3::29447::
::::SNP::Pf3D7_06_v3::29451::
::::SNP::Pf3D7_09_v3::827573::
::::SNP::Pf3D7_10_v3::386754::
::::SNP::Pf3D7_10_v3::708928::
::::SNP::Pf3D7_10_v3::708929::
::::SNP::Pf3D7_10_v3::708931::
::::INDEL::Pf3D7_04_v3::215687::
PF3D7_1232900::nucleotidyltransferase%2C+putative::INDEL::Pf3D7_12_v3::1352478::
PF3D7_1411000.1::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::440906::NNN123-
PF3D7_1432800::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::1294597::D163EMMI
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV019266 |
Cc1sc2ncnc(Sc3nc4ccccc4[nH]3)c2c1C |
|
|
MMV028895 |
Cl.CN(C)CCCN(C)C(=O)c1cc2cc(ccc2n1S(=O)(=O)c1ccccc1)-c1ccccc1 |
|
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV1223789 |
O=C(Nc1ncccc1O)c2ccc(cc2)S(=O)(=O)Nc3ccc(cc3)C |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV020623 |
Cc1noc(C)c1C(=O)N1CCCC(C1)c1[nH]c2c(C)cccc2c1-c1ccncc1 |
PF3D7_1211900::non-SERCA-type+Ca2%2B+-transporting+P-ATPase+%28ATP4%29::SNP::Pf3D7_12_v3::531693::p.Leu369Phe/c.1107A>T
PF3D7_1211900::non-SERCA-type+Ca2%2B+-transporting+P-ATPase+%28ATP4%29::SNP::Pf3D7_12_v3::532240::p.Ala187Val/c.560C>T
::::SNP::Pf3D7_12_v3::1058195::n.1058195C>T
PF3D7_1366300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::2652310::p.Ile130Val/c.388A>G
PF3D7_1322500::palmitoyltransferase%2C+putative+%28DHHC5%29::INDEL::Pf3D7_13_v3::954092::c.639+39_639+45delAAAAAAG
|
PMC6805474::"Maccesi M, Aguiar PH, et al. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors. 2019;12():493. doi:10.1186/s13071-019-3747-6"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC5995868::"Dennis AS, Rosling JE, et al. Diverse antimalarials from whole-cell phenotypic screens disrupt malaria parasite ion and volume homeostasis. Sci Rep. 2018;8():8795. doi:10.1038/s41598-018-26819-1"
PMC6461493::"Bhatnagar S, Nicklas S, et al. Diverse chemical compounds target Plasmodium falciparum plasma membrane lipid homeostasis. ACS Infect Dis. 2019;5(4):550-558. doi:10.1021/acsinfecdis.8b00277"
::
|
MMV1490397 |
CC(c1nn2c(nnc2s1)-c1ccco1)c1ccc(c(F)c1)-c1ccccc1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV1432711 |
O=C(COc1ccc2[nH]c3ccccc3c(=O)c2c1)Nc1ccccc1Cc1ccccc1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
Velpatasvir |
COC[C@H]1C[C@H](N(C1)C(=O)[C@@H](c1ccccc1)NC(=O)OC)c1ncc(n1)c1ccc2c(c1)COc1c2cc2ccc3c(c2c1)nc(n3)[C@@H]1CC[C@@H](N1C(=O)[C@H](C(C)C)NC(=O)OC)C |
|
PMC7232406::"Anasir MI, Ramanathan B, et al. Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses. 2020;12(4):367. doi:10.3390/v12040367"
PMC7240238:: Forum. Pharmaceut Med. 2020;():1-9. doi:10.1007/s40290-020-00337-w
PMC7228277::"Ji X, Li Z Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev. 2020;():10.1002/med.21664. doi:10.1002/med.21664"
PMC7021028::"Mainar AS, Kaymakoglu S P-022. Prevalence of the potential drug-drug interactions between pangenotypic direct-acting antivirals and the concomitant medication with patients with chronic hepatitis C virus infection. Turk J Gastroenterol. 2019;30(supp1):S43-S45. doi:10.5152/tjg.2019.28"
PMC7214852::"Ciliberto G, Mancini R, et al. Drug repurposing against COVID-19: focus on anticancer agents. J Exp Clin Cancer Res. 2020;39():86. doi:10.1186/s13046-020-01590-2"
PMC7203608::"Binka M, Janjua NZ, et al. Assessment of Treatment Strategies to Achieve Hepatitis C Elimination in Canada Using a Validated Model. JAMA Netw Open. 2020;3(5):e204192. doi:10.1001/jamanetworkopen.2020.4192"
PMC7188080::"Chaillon A, Rand EB, et al. Cost-effectiveness of Universal Hepatitis C Virus Screening of Pregnant Women in the United States. Clin Infect Dis. 2019;69(11):1888-1895. doi:10.1093/cid/ciz063"
PMC7180287::"Moss S, Boucher HW What’s Hot in Clinical Infectious Diseases? 2019 IDWeek Summary. Open Forum Infect Dis. 2020;7(4):ofaa104. doi:10.1093/ofid/ofaa104"
PMC7177520::"Sung PS, Shin EC Interferon Response in Hepatitis C Virus-Infected Hepatocytes: Issues to Consider in the Era of Direct-Acting Antivirals. Int J Mol Sci. 2020;21(7):2583. doi:10.3390/ijms21072583"
PMC7175367::"Omar AM, Elfaky MA, et al. 1H-Imidazole-2,5-Dicarboxamides as NS4A Peptidomimetics: Identification of a New Approach to Inhibit HCV-NS3 Protease. Biomolecules. 2020;10(3):479. doi:10.3390/biom10030479"
PMC7174166::"Ganne-Carrié N, Fontaine H, et al. Suggestions for the care of patients with liver disease during the Coronavirus 2019 pandemic. Clin Res Hepatol Gastroenterol. 2020;():. doi:10.1016/j.clinre.2020.04.001"
PMC7172984::"Li G, De Clercq E Current therapy for chronic hepatitis C: The role of direct-acting antivirals. Antiviral Res. 2017;142():83-122. doi:10.1016/j.antiviral.2017.02.014"
PMC7159295::"Wirtz VJ, Hogerzeil HV, et al. Essential medicines for universal health coverage. Lancet. 2016;389(10067):403-476. doi:10.1016/S0140-6736(16)31599-9"
PMID32350964::"Derayea SM, Abdel-Lateef MA, et al. Thin-layer chromatography/fluorescence detection approach for sensitive and selective determination of hepatitis C virus antiviral (velpatasvir): application to human plasma.. Luminescence. 2020;():. doi:3"
PMID32115243::"Li C, Li X, et al. Pharmacokinetics, Safety, and Tolerability of Ledipasvir/Sofosbuvir and Sofosbuvir/Velpatasvir in Healthy Chinese Subjects.. Clin Ther. 2020;42(3):448-457. doi:3"
PMID32195986::"Lalanne S, Jézéquel C, et al. Therapeutic Drug Monitoring-Guided Crushed Sofosbuvir-Velpatasvir Treatment: A Case Study.. Ther Drug Monit. 2020;42(2):163-164. doi:3"
PMID31818814::"Ramirez S, Fernandez-Antunez C, et al. Cell Culture Studies of the Efficacy and Barrier to Resistance of Sofosbuvir-Velpatasvir and Glecaprevir-Pibrentasvir against Hepatitis C Virus Genotypes 2a, 2b, and 2c.. Antimicrob Agents Chemother. 2020;64(3):. doi:3"
PMID32156618::"van Seyen M, Samson AD, et al. Crushed application of sofosbuvir and velpatasvir in a patient with swallowing disorder.. Int J Antimicrob Agents. 2020;():105934. doi:3"
PMID32231052::"Mehmood Y, Khan IU, et al. In-Vitro and In-Vivo Evaluation of Velpatasvir- Loaded Mesoporous Silica Scaffolds. A Prospective Carrier for Drug Bioavailability Enhancement.. Pharmaceutics. 2020;12(4):. doi:3"
PMC7062119::"Piekarska A, Berkan-Kawińska A, et al. Sofosbuvir/velpatasvir in treatment-experienced HCV-infected patients – short report. Clin Exp Hepatol. 2020;6(1):60-62. doi:10.5114/ceh.2020.93059"
PMC6996271::"Butt N, Muhammad I, et al. Efficacy and Safety of Sofosbuvir-Velpatasvir combination in Hepatitis C Virus-infected Pakistani Patients without Cirrhosis or with Compensated Cirrhosis: A Prospective, Open-label Interventional Trial. Cureus. 2020;12(1):e6537. doi:10.7759/cureus.6537"
PMID31809407::"Lalanne S, Jézéquel C, et al. TDM-guided Crushed Sofosbuvir-velpatasvir Treatment: A case study.. Ther Drug Monit. 2019;():. doi:3"
PMID32296504::"Margusino-Framiñán L, Cid-Silva P, et al. Effectiveness and safety of sofosbuvir/velpatasvir ± ribavirin vs glecaprevir/pibrentasvir in genotype 3 hepatitis C virus infected patients.. Eur J Hosp Pharm. 2020;27(e1):e41-e47. doi:3"
PMID31930300::"Mogul A, Teixeira E, et al. Effectiveness of crushed sofosbuvir-velpatasvir in a patient with dysphagia.. Am J Health Syst Pharm. 2020;77(6):417-418. doi:3"
PMC7062204::"Chen YW, Yiu CP, et al. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res. 2020;9():129. doi:10.12688/f1000research.22457.1"
PMID31858513::"Hikita H, Takehara T NS5A-P32 Deletion in Hepatitis C Genotype 1b Infection is the Most Refractory Treatment-Mediated Amino Acid Change Exhibiting Resistance to all NS5A Inhibitors.. Semin Liver Dis. 2020;40(2):143-153. doi:3"
PMID32343477::"Tanaka A, Drafting Committee for Hepatitis Management Guidelines, the Japan Society of Hepatology. JSH Guidelines for the Management of Hepatitis C Virus Infection: 2019 Update.. Hepatol Res. 2020;():. doi:3"
PMC7249615::"Depfenhart M, de Villiers D, et al. Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy?. Intern Emerg Med. 2020;():1-12. doi:10.1007/s11739-020-02383-3"
PMC7235799::"Johnson LP, Sterling RK The Prevalence and Impact of Hepatic Steatosis on Response to Direct-Acting Antiviral Therapy in HIV–HCV Coinfection. Biology (Basel). 2020;9(4):87. doi:10.3390/biology9040087"
PMC7190892::"AASLD-IDSA HCV Guidance Panel ChungRaymond Hepatitis C Guidance 2018 Update: AASLD-IDSA Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Clin Infect Dis. 2018;67(10):1477-1492. doi:10.1093/cid/ciy585"
PMC7168052::"Cheng Y, Sun F, et al. Inhibitory Activity of a Scorpion Defensin BmKDfsin3 against Hepatitis C Virus. Antibiotics (Basel). 2020;9(1):33. doi:10.3390/antibiotics9010033"
PMC7113931::"Bhatia M, Gupta E Emerging resistance to directly-acting antiviral therapy in treatment of chronic Hepatitis C infection—A brief review of literature. J Family Med Prim Care. 2020;9(2):531-538. doi:10.4103/jfmpc.jfmpc_943_19"
PMC7168573:: The 44th Annual Meeting of the European Society for Blood and Marrow Transplantation: Physicians Poster Sessions. Bone Marrow Transplant. 2018;53(Suppl 1):145-805. doi:10.1038/s41409-018-0354-7
PMC7164809::"Sarin SK, Kumar M, et al. Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol Hepatol. 2019;5(2):167-228. doi:10.1016/S2468-1253(19)30342-5"
PMID32392606::"Bernhard B, Stickel F Successful fourth line treatment of a relapse patient with chronic hepatitis C virus infection genotype 3a using sofosbuvir, glecaprevir/pibrentasvir, and ribavirin: a case report.. Z Gastroenterol. 2020;58(5):451-455. doi:3"
PMID32449966::"Mangia A, Milligan S, et al. Global real-world evidence of sofosbuvir/velpatasvir as simple, effective HCV treatment: analysis of 5552 patients from 12 cohorts.. Liver Int. 2020;():. doi:3"
PMID32405174::"Gaur N, Malhotra V, et al. Sofosbuvir-Velpatasvir Fixed Drug Combination for the Treatment of Chronic Hepatitis C Infection in Patients With End-Stage Renal Disease and Kidney Transplantation.. J Clin Exp Hepatol. 2020;10(3):189-193. doi:3"
PMID32303953::"Ouzan D, Larrey D, et al. Evolution of Hepatitis C Virus Treatment During the Era of Sofosbuvir-Based Therapies: A Real-World Experience in France.. Dig Dis Sci. 2020;():. doi:3"
PMID31082871::"Pearlman B, Perrys M, et al. Sofosbuvir/Velpatasvir/Voxilaprevir for Previous Treatment Failures With Glecaprevir/Pibrentasvir in Chronic Hepatitis C Infection.. Am J Gastroenterol. 2019;114(9):1550-1552. doi:3"
|
KDU691 |
O=C(N(C)C1=CC=C(C(F)(F)F)C=C1)C2=CN3C(C=N2)=NC=C3C(C=C4)=CC=C4C#N |
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC5575994::"Lim MY, LaMonte G, et al. UDP-galactose and Acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat Microbiol. 2016;1():16166. doi:10.1038/nmicrobiol.2016.166"
PMC3940870::"McNamara CW, Lee MC, et al. Targeting Plasmodium phosphatidylinositol 4-kinase to eliminate malaria. Nature. 2013;504(7479):248-253. doi:10.1038/nature12782"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7171069::"Mao F, Mu H, et al. Hemocyte phagosomal proteome is dynamically shaped by cytoskeleton remodeling and interorganellar communication with endoplasmic reticulum during phagocytosis in a marine invertebrate, Crassostrea gigas. Sci Rep. 2020;10():6577. doi:10.1038/s41598-020-63676-3"
PMC7064746::"Funkhouser-Jones LJ, Ravindran S, et al. Defining Stage-Specific Activity of Potent New Inhibitors of Cryptosporidium parvum Growth In Vitro. mBio. 2020;11(2):e00052-20. doi:10.1128/mBio.00052-20"
PMC6941962::"Voorberg-van der Wel AM, Zeeman AM, et al. A dual fluorescent Plasmodium cynomolgi reporter line reveals in vitro malaria hypnozoite reactivation. Commun Biol. 2020;3():7. doi:10.1038/s42003-019-0737-3"
PMC7024564::"Barrett MP, Kyle DE, et al. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol. 2019;17(10):607-620. doi:10.1038/s41579-019-0238-x"
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6542585::"Gupta DK, Dembele L, et al. The Plasmodium liver-specific protein 2 (LISP2) is an early marker of liver stage development. eLife. 2019;8():e43362. doi:10.7554/eLife.43362"
PMC6504873::"Penzo M, de las Heras-Dueña L, et al. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci Rep. 2019;9():7005. doi:10.1038/s41598-019-42801-x"
PMC6125526::"Brunschwig C, Lawrence N, et al. UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrob Agents Chemother. 2018;62(9):e00012-18. doi:10.1128/AAC.00012-18"
PMC6093624::"Radke JB, Burrows JN, et al. Evaluation of current and emerging anti-malarial medicines for inhibition of Toxoplasma gondii growth in vitro. ACS Infect Dis. 2018;4(8):1264-1274. doi:10.1021/acsinfecdis.8b00113"
PMC6013505::"Ashley EA, Phyo AP Drugs in Development for Malaria. Drugs. 2018;78(9):861-879. doi:10.1007/s40265-018-0911-9"
PMC6166223::"Cabrera DG, Horatscheck A, et al. Plasmodial Kinase Inhibitors: License to Cure?. J Med Chem. 2018;61(18):8061-8077. doi:10.1021/acs.jmedchem.8b00329"
PMC5943321::"Roth A, Maher SP, et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun. 2018;9():1837. doi:10.1038/s41467-018-04221-9"
PMC5923180::"Dembele L, Gupta DK, et al. Imidazolopiperazines Kill both Rings and Dormant Rings in Wild-Type and K13 Artemisinin-Resistant Plasmodium falciparum In Vitro. Antimicrob Agents Chemother. 2018;62(5):e02235-17. doi:10.1128/AAC.02235-17"
PMC5913926::"Subramaniam S, Schmid CD, et al. Using Yeast Synthetic Lethality To Inform Drug Combination for Malaria. Antimicrob Agents Chemother. 2018;62(4):e01533-17. doi:10.1128/AAC.01533-17"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC5732164::"Dechering KJ, Duerr HP, et al. Modelling mosquito infection at natural parasite densities identifies drugs targeting EF2, PI4K or ATP4 as key candidates for interrupting malaria transmission. Sci Rep. 2017;7():17680. doi:10.1038/s41598-017-16671-0"
PMC5473467::"Manjunatha UH, Vinayak S, et al. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature. 2017;546(7658):376-380. doi:10.1038/nature22337"
PMC5443816::"Dembele L, Ang X, et al. The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Sci Rep. 2017;7():2325. doi:10.1038/s41598-017-02440-6"
PMC4862498::"Zeeman AM, Lakshminarayana SB, et al. PI4 Kinase Is a Prophylactic but Not Radical Curative Target in Plasmodium vivax-Type Malaria Parasites. Antimicrob Agents Chemother. 2016;60(5):2858-2863. doi:10.1128/AAC.03080-15"
PMID29542317::"Orjuela-Sanchez P, Villa ZH, et al. Developing Plasmodium vivax Resources for Liver Stage Study in the Peruvian Amazon Region.. ACS Infect Dis. 2018;4(4):531-540. doi:3"
PMC4890880::"Swann J, Corey V, et al. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infect Dis. 2016;2(4):281-293. doi:10.1021/acsinfecdis.5b00143"
PMC4137381::"Zou B, Nagle A, et al. Lead Optimization of Imidazopyrazines: A New Class of Antimalarial with Activity on Plasmodium Liver Stages. ACS Med Chem Lett. 2014;5(8):947-950. doi:10.1021/ml500244m"
PMC4958248::"LaMonte G, Lim MY, et al. Mutations in the Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL) Confer Multidrug Resistance. mBio. 2016;7(4):e00696-16. doi:10.1128/mBio.00696-16"
PMC4455353::"Campo B, Vandal O, et al. Killing the hypnozoite – drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog Glob Health. 2015;109(3):107-122. doi:10.1179/2047773215Y.0000000013"
|
cytocholasin B |
C[C@@H]1CCC[C@@H](O)/C=C/C(=O)O[C@@]23[C@@H](/C=C/C1)[C@H](O)C(=C)[C@H]([C@H]3[C@@H](NC2=O)Cc1ccccc1)C |
|
|
MMV006901 |
CN(C)c1cc(NC(=O)Nc2ccccc2)c2ccccc2n1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC6301270::"Veale CG, Hoppe HC Screening of the Pathogen Box reveals new starting points for anti-trypanosomal drug discovery †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8md00319j . Medchemcomm. 2018;9(12):2037-2044. doi:10.1039/c8md00319j"
PMC5571359::"Duffy S, Sykes ML, et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother. 2017;61(9):e00379-17. doi:10.1128/AAC.00379-17"
|
MMV009108 |
CCN(CC)S(=O)(=O)C1=CC=C(C=C1)C1=CSC(NC2=CC(C)=C(C)C=C2)=N1 |
PF3D7_0107500::lipid%2Fsterol%3AH++symporter::SNP::Pf3D7_01_v3::305936::A1108T
PF3D7_0929400::high+molecular+weight+rhoptry+protein+2+%28RhopH2%29::SNP::Pf3D7_09_v3::1178516::
PF3D7_1010600::eukaryotic+translation+initiation+factor+2+beta+subunit%2C+putative::SNP::Pf3D7_10_v3::420457::
PF3D7_1018800::conserved+protein%2C+unknown+function::SNP::Pf3D7_10_v3::750852::D213G
PF3D7_1136500.1::casein+kinase+1+%28CK1%29::SNP::Pf3D7_11_v3::1432774::
PF3D7_1136500.1::casein+kinase+1+%28CK1%29::SNP::Pf3D7_11_v3::1432780::
PF3D7_1136500.1::casein+kinase+1+%28CK1%29::SNP::Pf3D7_11_v3::1432787::
PF3D7_1229900.1::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_12_v3::1232621::
PF3D7_0719600::60S+ribosomal+protein+L11a%2C+putative::INDEL::Pf3D7_07_v3::859289::
PF3D7_0728700::alpha%2Fbeta+hydrolase%2C+putative::INDEL::Pf3D7_07_v3::1227581::
PF3D7_1245600::kinesin%2C+putative::INDEL::Pf3D7_12_v3::1902979::DDDE693E
PF3D7_1405800::large+subunit+rRNA+processing+protein%2C+putative::INDEL::Pf3D7_14_v3::203424::
|
PMC6424564::"Istvan ES, Das S, et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife. 2019;8():e40529. doi:10.7554/eLife.40529"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6461493::"Bhatnagar S, Nicklas S, et al. Diverse chemical compounds target Plasmodium falciparum plasma membrane lipid homeostasis. ACS Infect Dis. 2019;5(4):550-558. doi:10.1021/acsinfecdis.8b00277"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
JRH-398-112-01 |
|
|
PMC6280039::"Stone J, Fraser H, et al. Incarceration history and risk of HIV and hepatitis C virus acquisition among people who inject drugs: a systematic review and meta-analysis. Lancet Infect Dis. 2018;18(12):1397-1409. doi:10.1016/S1473-3099(18)30469-9"
PMC5846083::"Syeda SS, Sánchez G, et al. Design, Synthesis, and in Vitro and in Vivo Evaluation of Ouabain Analogues as Potent and Selective Na,K-ATPase α4 Isoform Inhibitors for Male Contraception. J Med Chem. 2018;61(5):1800-1820. doi:10.1021/acs.jmedchem.7b00925"
PMC4420072::"Suzuki T, Yamaguchi H, et al. Crystal structures of dichloridopalladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(diphenylphosphanyl)quinoline. Acta Crystallogr E Crystallogr Commun. 2015;71(Pt 5):447-451. doi:10.1107/S2056989015006076"
PMC1316049::"Lua DT, Yasuike M, et al. Transcription Program of Red Sea Bream Iridovirus as Revealed by DNA Microarrays. J Virol. 2005;79(24):15151-15164. doi:10.1128/JVI.79.24.15151-15164.2005"
PMC1564640::"Riendeau D, Percival MD, et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol. 1997;121(1):105-117. doi:10.1038/sj.bjp.0701076"
PMC1060290::"Albert X, Bayo A, et al. The effectiveness of health systems in influencing avoidable mortality: a study in Valencia, Spain, 1975-90.. J Epidemiol Community Health. 1996;50(3):320-325. doi:10.1136/jech.50.3.320"
PMC1339275::"Charlton JR, Velez R Some international comparisons of mortality amenable to medical intervention.. Br Med J (Clin Res Ed). 1986;292(6516):295-301. doi:10.1136/bmj.292.6516.295"
PMC1306376::"Zipser RD, Laffi G Prostaglandins, Thromboxanes and Leukotrienes in Clinical Medicine. West J Med. 1985;143(4):485-497. doi:"
PMC1238350::"Lee DB, Zawada ET, et al. The Pathophysiology and Clinical Aspects of Hypercalcemic Disorders. West J Med. 1978;129(4):278-320. doi:"
PMC3449819::"Iwamoto T, Mamiya N, et al. PLCγ2 Activates CREB-dependent Transcription in PC12 Cells Through Phosphorylation of CREB at Serine 133. Cytotechnology. 2005;47(1-3):107-116. doi:10.1007/s10616-005-3763-6"
PMC1867744:: Abstracts. Gut. 2003;52(Suppl 1):a1-a116. doi:10.1136/gut.52.suppl_1.a1
PMC1913816::" 48th Annual Meeting February 14-18, 2004 Baltimore, Maryland: February 15, 2004 Sunday Posters, Part 1. Biophys J. 2004;86(Suppl 1 Pt 2):35a-91a. doi:"
|
MMV1531441 |
COc1cc(NC(=O)Nc2cc(Cl)cc(Cl)c2)cc(c1)C(F)(F)F |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV084864 |
O=C(Nc1cnc2ccccc2c1)c1cccc(c1)-n1cnnn1 |
PF3D7_0530400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_05_v3::1241112::p.Asn957_Asn958dup/c.2870_2875dupATAATA
|
PMC6395923::"Machicado C, Soto MP, et al. Screening the Pathogen Box for Identification of New Chemical Agents with Anti-Fasciola hepatica Activity. Antimicrob Agents Chemother. 2019;63(3):e02373-18. doi:10.1128/AAC.02373-18"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
|
MMV006169 |
c1ccc(cc1)CNc2c3ccccc3nc(n2)Nc4ccccc4 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6478823::"Jumani RS, Hasan MM, et al. A suite of phenotypic assays to ensure pipeline diversity when prioritizing drug-like Cryptosporidium growth inhibitors. Nat Commun. 2019;10():1862. doi:10.1038/s41467-019-09880-w"
PMC6395901::"Gilson PR, Nguyen W, et al. Evaluation of 4-Amino 2-Anilinoquinazolines against Plasmodium and Other Apicomplexan Parasites In Vitro and in a P. falciparum Humanized NOD-scid IL2Rγnull Mouse Model of Malaria. Antimicrob Agents Chemother. 2019;63(3):e01804-18. doi:10.1128/AAC.01804-18"
PMC4788259::"Stadelmann B, Rufener R, et al. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis. PLoS Negl Trop Dis. 2016;10(3):e0004535. doi:10.1371/journal.pntd.0004535"
PMC4751939::"Khraiwesh M, Leed S, et al. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box against Intracellular Leishmania major Amastigotes. Am J Trop Med Hyg. 2016;94(2):340-347. doi:10.4269/ajtmh.15-0448"
PMC4639769::"Lucantoni L, Silvestrini F, et al. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep. 2015;5():16414. doi:10.1038/srep16414"
|
MMV019662 |
COC1=CC=C(C=C1)N1CCN(CC1)C(CNC(=O)C1CCCCC1)C1=CC=C2OCOC2=C1 |
PF3D7_0107500::lipid%2Fsterol%3AH++symporter::SNP::Pf3D7_01_v3::304636::F1436I
PF3D7_0107500::lipid%2Fsterol%3AH++symporter::SNP::Pf3D7_01_v3::307789::S490L
PF3D7_1368300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_13_v3::2719278::N198
PF3D7_0106700::small+ribosomal+subunit+assembling+AARP2+protein+%28AARP2%29::INDEL::Pf3D7_01_v3::282537::-462DDDDN
PF3D7_0515600::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_05_v3::649782::
PF3D7_0518700::mRNA-binding+protein+PUF1+%28PUF1%29::INDEL::Pf3D7_05_v3::779570::-290II
PF3D7_0606000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_06_v3::252082::K574IIK
PF3D7_0819900::U6+snRNA-associated+Sm-like+protein+LSm3%2C+putative+%28LSM3%29::INDEL::Pf3D7_08_v3::899558::
PF3D7_0824000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_08_v3::1049711::K665IIK
PF3D7_0824200::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_08_v3::1057889::SNNNN827S
PF3D7_1021900::conserved+Plasmodium+protein+%2810b+antigen%29%2C+unknown+function::INDEL::Pf3D7_10_v3::911058::N429-
PF3D7_1117900::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_11_v3::681281::DEKEDEHQYKREN844D
PF3D7_1244400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_12_v3::1863161::S1169SNN
|
PMC6424564::"Istvan ES, Das S, et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife. 2019;8():e40529. doi:10.7554/eLife.40529"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6461493::"Bhatnagar S, Nicklas S, et al. Diverse chemical compounds target Plasmodium falciparum plasma membrane lipid homeostasis. ACS Infect Dis. 2019;5(4):550-558. doi:10.1021/acsinfecdis.8b00277"
PMC6393310::"Huckaby AC, Granum CS, et al. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res. 2018;47(4):1615-1627. doi:10.1093/nar/gky1268"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
MMV024114 |
CC1=CC=C(C=C1)S(=O)(=O)N1C=C(C2=CC(Br)=CN=C12)C1=CC(N)=NC=C1 |
PF3D7_0709000::chloroquine+resistance+transporter+%28CRT%29::SNP::Pf3D7_07_v3::403667::S90N
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23309::T1783
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23533::S1858N
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23534::S1858R
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23536::S1859N
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23537::S1859
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23541::D1861N
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23552::F1864L
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23566::S1869N
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23624::R1888
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23625::D1889N
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_12_v3::23635::T1892S
PF3D7_0106800::Rab+GTPase+5c+%28RAB5c%29::INDEL::Pf3D7_01_v3::288090::
PF3D7_0732700::rifin+%28RIF%29::INDEL::Pf3D7_07_v3::1409923::-343
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::23506::QPKDV1849Q
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::23666::-1903
PF3D7_1200100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::23669::-1904
PF3D7_1232700::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_12_v3::1346992::
PF3D7_1454400::aminopeptidase+P+%28APP%29::INDEL::Pf3D7_14_v3::2234172::-11
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC6805474::"Maccesi M, Aguiar PH, et al. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors. 2019;12():493. doi:10.1186/s13071-019-3747-6"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC6095626::"Hennessey KM, Rogiers IC, et al. Screening of the Pathogen Box for inhibitors with dual efficacy against Giardia lamblia and Cryptosporidium parvum. PLoS Negl Trop Dis. 2018;12(8):e0006673. doi:10.1371/journal.pntd.0006673"
|
MMV668311 |
CNc1nc(NCCCN(C)C)c2sc(cc2n1)c3cccc(c3)C(F)(F)F |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
|
MMV023388 |
FC(F)(F)c1cccc(c1)C(=O)NC1CCN(C1)c1ccnc2ccccc12 |
|
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
|
MMV019555 |
Cl.C(CCCNc1c2CCCCc2nc2ccccc12)CCNc1c2CCCCc2nc2ccccc12 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5683671::"Chirawurah JD, Ansah F, et al. Antimalarial activity of Malaria Box Compounds against Plasmodium falciparum clinical isolates. Int J Parasitol Drugs Drug Resist. 2017;7(3):399-406. doi:10.1016/j.ijpddr.2017.10.005"
PMC4144897::"Sanders NG, Sullivan DJ, et al. Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity. PLoS One. 2014;9(8):e105817. doi:10.1371/journal.pone.0105817"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
PMC3886923::"Ingram-Sieber K, Cowan N, et al. Orally Active Antischistosomal Early Leads Identified from the Open Access Malaria Box. PLoS Negl Trop Dis. 2014;8(1):e2610. doi:10.1371/journal.pntd.0002610"
PMC4898484::"Choi JY, Kumar V, et al. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening. Mol Microbiol. 2015;99(6):999-1014. doi:10.1111/mmi.13280"
PMC4639769::"Lucantoni L, Silvestrini F, et al. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep. 2015;5():16414. doi:10.1038/srep16414"
|
MMV007564 |
CC1=CC=C(CN2C3=C(C=CC=C3)N=C2N2CCC(CC2)C(=O)NCC2=CC=CS2)C=C1 |
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::925598::L833I
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::926413::L1073Q
PF3D7_0321900::cyclic+amine+resistance+locus+protein+%28CARL%29::SNP::Pf3D7_03_v3::926708::L1136P
PF3D7_1138600::beta-catenin-like+protein+1%2C+putative::INDEL::Pf3D7_11_v3::1524221::
|
PMC7156427::"LaMonte GM, Rocamora F, et al. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat Commun. 2020;11():1780. doi:10.1038/s41467-020-15440-4"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5075070::"Creek DJ, Chua HH, et al. Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrob Agents Chemother. 2016;60(11):6650-6663. doi:10.1128/AAC.01226-16"
PMC4794828::"Ahyong V, Sheridan CM, et al. Identification of Plasmodium falciparum specific translation inhibitors from the MMV Malaria Box using a high throughput in vitro translation screen. Malar J. 2016;15():173. doi:10.1186/s12936-016-1231-8"
PMC4751939::"Khraiwesh M, Leed S, et al. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box against Intracellular Leishmania major Amastigotes. Am J Trop Med Hyg. 2016;94(2):340-347. doi:10.4269/ajtmh.15-0448"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
MMV665852 |
ClC1=CC=C(NC(=O)NC2=CC=C(Cl)C(Cl)=C2)C=C1Cl |
PF3D7_0703000::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_07_v3::120698::A1820
PF3D7_0726400::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_07_v3::1110487::K4488N
PF3D7_1021400::endomembrane+protein+70%2C+putative::SNP::Pf3D7_10_v3::866652::S590
PF3D7_1212500::glycerol-3-phosphate+acyltransferase+%28GAT%29::SNP::Pf3D7_12_v3::552397::I486T
PF3D7_1439100::DEAD%2FDEAH+box+helicase%2C+putative::SNP::Pf3D7_14_v3::1581992::N415Y
PF3D7_0420000::zinc+finger+protein%2C+putative::INDEL::Pf3D7_04_v3::899361::QNDHNDQNDHSDQNDQNDHNDQNDH1764H
PF3D7_0727100::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_07_v3::1152503::DDD949D
PF3D7_0926000::protein+kinase%2C+putative::INDEL::Pf3D7_09_v3::1045997::NEENEENEI680-
PF3D7_1120000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_11_v3::758505::DNNNNNN772D
PF3D7_1444100::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::1806644::D5823DMN
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC6278391::"Pujol E, Blanco-Cabra N, et al. Pentafluorosulfanyl-containing Triclocarban Analogs with Potent Antimicrobial Activity. Molecules. 2018;23(11):2853. doi:10.3390/molecules23112853"
PMC6119338::"Douglas RG, Reinig M, et al. Screening for potential prophylactics targeting sporozoite motility through the skin. Malar J. 2018;17():319. doi:10.1186/s12936-018-2469-0"
PMC5861040::"Machado FC, Franco CH, et al. Identification of di-substituted ureas that prevent growth of trypanosomes through inhibition of translation initiation. Sci Rep. 2018;8():4857. doi:10.1038/s41598-018-23259-9"
PMC6026081::"Wu J, Wang C, et al. Progress in Antischistosomal N,N′-Diarylurea SAR. Bioorg Med Chem Lett. 2017;28(3):244-248. doi:10.1016/j.bmcl.2017.12.064"
PMC5371198::"Bergquist R, Utzinger J, et al. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative?. Infect Dis Poverty. 2017;6():74. doi:10.1186/s40249-017-0286-2"
PMC4788259::"Stadelmann B, Rufener R, et al. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis. PLoS Negl Trop Dis. 2016;10(3):e0004535. doi:10.1371/journal.pntd.0004535"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC4533769::"Cowan N, Keiser J Repurposing of anticancer drugs: in vitro and in vivo activities against Schistosoma mansoni. Parasit Vectors. 2015;8():417. doi:10.1186/s13071-015-1023-y"
PMC4356791::"Cowan N, Dätwyler P, et al. Activities of N,N′-Diarylurea MMV665852 Analogs against Schistosoma mansoni. Antimicrob Agents Chemother. 2015;59(4):1935-1941. doi:10.1128/AAC.04463-14"
PMC3886923::"Ingram-Sieber K, Cowan N, et al. Orally Active Antischistosomal Early Leads Identified from the Open Access Malaria Box. PLoS Negl Trop Dis. 2014;8(1):e2610. doi:10.1371/journal.pntd.0002610"
|
indolmycin |
C[C@@H]([C@]1([H])OC(NC)=NC1=O)C2=CNC3=C2C=CC=C3 |
PF3D7_1013900::initiation+factor+2+subunit+family%2C+putative::SNP::Pf3D7_10_v3::548711::E65K
PF3D7_1120000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_11_v3::757691::KEEIKEI501-
|
PMC7092877::"Lee EY, Kim S, et al. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol. 2018;154():424-434. doi:10.1016/j.bcp.2018.06.009"
PMC7082308::"Chen FY, Li X, et al. Regulation of the Ras-Related Signaling Pathway by Small Molecules Containing an Indole Core Scaffold: A Potential Antitumor Therapy. Front Pharmacol. 2020;11():280. doi:10.3389/fphar.2020.00280"
PMC7104373::"Scott TA, Piel J The hidden enzymology of bacterial natural product biosynthesis. Nat Rev Chem. 2019;3(7):404-425. doi:10.1038/s41570-019-0107-1"
PMC6995004::"Svetlov MS, Cohen S, et al. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria. Proc Natl Acad Sci U S A. 2020;117(4):1971-1975. doi:10.1073/pnas.1918948117"
PMC6804068::Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules. 2019;24(19):3430. doi:10.3390/molecules24193430
PMC6667170::"Kennedy K, Cobbold SA, et al. Delayed death in the malaria parasite Plasmodium falciparum is caused by disruption of prenylation-dependent intracellular trafficking. PLoS Biol. 2019;17(7):e3000376. doi:10.1371/journal.pbio.3000376"
PMC6697067::"Soldatou S, Eldjarn GH, et al. Linking biosynthetic and chemical space to accelerate microbial secondary metabolite discovery. FEMS Microbiol Lett. 2019;366(13):fnz142. doi:10.1093/femsle/fnz142"
PMC6581688::"Paulsen SS, Strube ML, et al. Marine Chitinolytic Pseudoalteromonas Represents an Untapped Reservoir of Bioactive Potential. mSystems. 2019;4(4):e00060-19. doi:10.1128/mSystems.00060-19"
PMC6498875::"Singh BP, Rateb ME, et al. Editorial: Microbial Secondary Metabolites: Recent Developments and Technological Challenges. Front Microbiol. 2019;10():914. doi:10.3389/fmicb.2019.00914"
PMC6450493::"Stana A, Vodnar DC, et al. Antioxidant activity and antibacterial evaluation of new thiazolin-4-one derivatives as potential tryptophanyl-tRNA synthetase inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):898-908. doi:10.1080/14756366.2019.1596086"
PMC6355876::"Parrot D, Blümel M, et al. Mapping the Surface Microbiome and Metabolome of Brown Seaweed Fucus vesiculosus by Amplicon Sequencing, Integrated Metabolomics and Imaging Techniques. Sci Rep. 2019;9():1061. doi:10.1038/s41598-018-37914-8"
PMC6462538::"Francklyn CS, Mullen P Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem. 2019;294(14):5365-5385. doi:10.1074/jbc.REV118.002956"
PMC6321835::Jin M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp Mol Med. 2019;51(1):1. doi:10.1038/s12276-018-0196-9
PMC6315286::"Agnew T, Goldsworthy M, et al. A Wars2 Mutant Mouse Model Displays OXPHOS Deficiencies and Activation of Tissue-Specific Stress Response Pathways. Cell Rep. 2018;25(12):3315-3328.e6. doi:10.1016/j.celrep.2018.11.080"
PMC6434697::"Almhjell PJ, Boville CE, et al. Engineering enzymes for noncanonical amino acid synthesis. Chem Soc Rev. 2018;47(24):8980-8997. doi:10.1039/c8cs00665b"
PMC6528606::"Timmermans ML, Picott KJ, et al. Culturing marine bacteria from the genus Pseudoalteromonas on a cotton scaffold alters secondary metabolite production. Microbiologyopen. 2018;8(5):e00724. doi:10.1002/mbo3.724"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC5753197::"Caspi R, Billington R, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2017;46(Database issue):D633-D639. doi:10.1093/nar/gkx935"
PMC5954986::"Docampo M, Olubu A, et al. Glucuronidated flavonoids in neurological protection: structural analysis and approaches for chemical and biological synthesis. J Agric Food Chem. 2017;65(35):7607-7623. doi:10.1021/acs.jafc.7b02633"
PMC5925218::"Shi Y, Jiang Z, et al. Biosynthesis of antibiotic chuangxinmycin from Actinoplanes tsinanensis. Acta Pharm Sin B. 2017;8(2):283-294. doi:10.1016/j.apsb.2017.07.005"
PMID31964747::"Hatch ND, Ouellette SP Inhibition of tRNA Synthetases Induces Persistence in <i>Chlamydia</i>.. Infect Immun. 2020;88(4):. doi:3"
PMID31406372::"Du YL, Higgins MA, et al. Convergent biosynthetic transformations to a bacterial specialized metabolite.. Nat Chem Biol. 2019;15(11):1043-1048. doi:3"
PMC5025454::"Thøgersen MS, Delpin MW, et al. Production of the Bioactive Compounds Violacein and Indolmycin Is Conditional in a maeA Mutant of Pseudoalteromonas luteoviolacea S4054 Lacking the Malic Enzyme. Front Microbiol. 2016;7():1461. doi:10.3389/fmicb.2016.01461"
PMC4899734::"Pasaje CF, Cheung V, et al. Selective inhibition of apicoplast tryptophanyl-tRNA synthetase causes delayed death in Plasmodium falciparum. Sci Rep. 2016;6():27531. doi:10.1038/srep27531"
PMC4697160::"Williams TL, Yin YW, et al. Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based. J Biol Chem. 2015;291(1):255-265. doi:10.1074/jbc.M115.690321"
PMC5069768::"Maansson M, Vynne NG, et al. An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria. mSystems. 2016;1(3):e00028-15. doi:10.1128/mSystems.00028-15"
PMC4352800::"Du YL, Alkhalaf LM, et al. In vitro reconstitution of indolmycin biosynthesis reveals the molecular basis of oxazolinone assembly. Proc Natl Acad Sci U S A. 2015;112(9):2717-2722. doi:10.1073/pnas.1419964112"
PMID27373069::"Cheng X, Zhu T, et al. [Genetic manipulation system and genomic library of Streptomyces luteosporeus NRRL 2401].. Wei Sheng Wu Xue Bao. 2016;56(2):209-18. doi:"
PMID26807714::"Du YL, Singh R, et al. A pyridoxal phosphate-dependent enzyme that oxidizes an unactivated carbon-carbon bond.. Nat Chem Biol. 2016;12(3):194-9. doi:3"
PMID24622888::"Silva I, Real LJ, et al. A disk-diffusion-based target identification platform for antibacterials (TIPA): an inducible assay for profiling MOAs of antibacterial compounds.. Appl Microbiol Biotechnol. 2014;98(12):5551-66. doi:3"
PMC3911035::"Neu AK, Månsson M, et al. Toxicity of Bioactive and Probiotic Marine Bacteria and Their Secondary Metabolites in Artemia sp. and Caenorhabditis elegans as Eukaryotic Model Organisms. Appl Environ Microbiol. 2014;80(1):146-153. doi:10.1128/AEM.02717-13"
PMC3447336::"Vynne NG, Mansson M, et al. Gene Sequence Based Clustering Assists in Dereplication of Pseudoalteromonas luteoviolacea Strains with Identical Inhibitory Activity and Antibiotic Production . Mar Drugs. 2012;10(8):1729-1740. doi:10.3390/md10081729"
PMC3529589::"Maaetoft-Udsen K, Shimoda LM, et al. Aryl Hydrocarbon Receptor Ligand Effects in RBL2H3 Cells. J Immunotoxicol. 2012;9(3):327-337. doi:10.3109/1547691X.2012.661802"
PMC4321359::Gram L. Silent clusters – speak up!. Microb Biotechnol. 2014;8(1):13-14. doi:10.1111/1751-7915.12181
PMC2737876::"Vecchione JJ, Sello JK A Novel Tryptophanyl-tRNA Synthetase Gene Confers High-Level Resistance to Indolmycin . Antimicrob Agents Chemother. 2009;53(9):3972-3980. doi:10.1128/AAC.00723-09"
|
NITD678 |
O=C(NC1=C2C=C(Cl)C=C1)[C@]2(N[C@@H](C)CC3)C4=C3C5=CC=CC=C5N4 |
PF3D7_0100100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_01_v3::36013::p.Gly1793Gly/c.5379C>T
PF3D7_0222800::stevor::SNP::Pf3D7_02_v3::900047::p.Gly173Arg/c.517G>C
PF3D7_0222800::stevor::SNP::Pf3D7_02_v3::900049::p.Gly173Gly/c.519G>C
PF3D7_0222800::stevor::SNP::Pf3D7_02_v3::900068::p.Cys180Gly/c.538T>G
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::37894::p.Glu310Glu/c.930A>G
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::37897::p.Asp311Glu/c.933C>G
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_03_v3::37970::p.Lys336Glu/c.1006A>G
PF3D7_0400500::rifin+%28RIF%29::SNP::Pf3D7_04_v3::60322::p.Thr178Ala/c.532A>G
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1157581::p.Arg387Gly/c.1159C>G
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1157582::p.Arg387Gln/c.1160G>A
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1157593::p.Glu391Lys/c.1171G>A
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_04_v3::1165963::c.9441+100G>A
PF3D7_0632500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_06_v3::1363882::p.Leu850Gln/c.2549T>A
PF3D7_0632500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_06_v3::1363884::p.Gln849His/c.2547A>T
PF3D7_0632500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_06_v3::1363886::p.Gln849*/c.2545C>T
PF3D7_0632500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_06_v3::1363887::p.Ala848Ala/c.2544A>G
PF3D7_0632500::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_06_v3::1363890::p.Val847Val/c.2541G>A
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::588392::p.Leu178Ile/c.532T>A
PF3D7_0712800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::588409::p.Gly172Asp/c.515G>A
PF3D7_0715100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_07_v3::674935::c.169+27T>A
PF3D7_0715100::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_07_v3::674938::c.169+24T>A
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::440807::p.Gln134Glu/c.400C>G
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::440812::p.Gln135Gln/c.405G>A
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::440819::p.Thr138Pro/c.412A>C
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::440822::p.Glu139Gln/c.415G>C
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::440824::p.Glu139Asp/c.417A>T
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::440826::p.Asn140Thr/c.419A>C
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_08_v3::440827::p.Asn140Lys/c.420T>A
PF3D7_0831500::Plasmodium+exported+protein+%28PHIST%29%2C+unknown+function::SNP::Pf3D7_08_v3::1353912::p.Arg84Thr/c.251G>C
PF3D7_0937500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::1481156::p.Val301Met/c.901G>A
PF3D7_0937500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::1481157::p.Asn300Lys/c.900C>G
PF3D7_0937500::rifin+%28RIF%29::SNP::Pf3D7_09_v3::1481667::p.Met130Ile/c.390G>A
PF3D7_0937800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_09_v3::1501908::p.Glu477Lys/c.1429G>A
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::33050::p.Leu2867Leu/c.8601A>G
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_11_v3::34630::c.7716+41A>C
PF3D7_1211900::non-SERCA-type+Ca2++-transporting+P-ATPase+%28ATP4%29::SNP::Pf3D7_12_v3::532013::p.Ile263Val/c.787A>G
PF3D7_1211900::non-SERCA-type+Ca2++-transporting+P-ATPase+%28ATP4%29::SNP::Pf3D7_12_v3::532191::p.Ile203Met/c.609A>G
PF3D7_1254700::rifin+%28RIF%29::SNP::Pf3D7_12_v3::2225714::p.Cys88Cys/c.264C>T
PF3D7_1254700::rifin+%28RIF%29::SNP::Pf3D7_12_v3::2225718::p.Lys87Arg/c.260A>G
PF3D7_1254700::rifin+%28RIF%29::SNP::Pf3D7_12_v3::2225719::p.Lys87Gln/c.259A>C
PF3D7_1300300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::37129::p.Pro2538Pro/c.7614A>C
PF3D7_1300300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_13_v3::37133::p.Ile2537Lys/c.7610T>A
PF3D7_1400800::rifin+%28RIF%29::SNP::Pf3D7_14_v3::27904::p.Ala123Gly/c.368C>G
PF3D7_1480000::rifin+%28RIF%29::SNP::Pf3D7_14_v3::3286350::p.Val124Ile/c.370G>A
PF3D7_0300100::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_03_v3::37960::p.Asp333_Gly334del/c.997_1002delGATGGT
PF3D7_0310400::parasite-infected+erythrocyte+surface+protein+%28PIESP1%29::INDEL::Pf3D7_03_v3::450456::p.Asn1001_Glu1006del/c.3001_3018delAATGTGAAAGGTGATGAA
PF3D7_0400400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::51936::p.Glu1643fs/c.4923_4924delAC
PF3D7_0425800::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_04_v3::1165966::c.9441+103_9441+104insG
PF3D7_0808700::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_08_v3::440831::p.Thr142_Thr143insAla/c.426_427insGCA
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_11_v3::34624::c.7716+46delC
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_11_v3::34631::c.7716+37_7716+39delGTG
PF3D7_1100200::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_11_v3::34636::c.7716+32_7716+34delATG
PF3D7_1300300::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_13_v3::37139::p.Lys2534del/c.7601_7603delAAA
PF3D7_1402800::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::102256::p.Asp471fs/c.1411delG
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC3567157::"Bopp SE, Manary MJ, et al. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genet. 2013;9(2):e1003293. doi:10.1371/journal.pgen.1003293"
PMC3050001::"Rottmann M, McNamara C, et al. Spiroindolones, a new and potent chemotype for the treatment of malaria. Science. 2010;329(5996):1175-1180. doi:10.1126/science.1193225"
PMC4839739::"Lee AH, Fidock DA Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites. PLoS One. 2016;11(4):e0154166. doi:10.1371/journal.pone.0154166"
PMC4559606::"Spillman NJ, Kirk K The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. Int J Parasitol Drugs Drug Resist. 2015;5(3):149-162. doi:10.1016/j.ijpddr.2015.07.001"
PMC4340351::"Flannery EL, McNamara CW, et al. Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials. ACS Chem Biol. 2014;10(2):413-420. doi:10.1021/cb500616x"
PMC3945619::"Manary MJ, Singhakul SS, et al. Identification of pathogen genomic variants through an integrated pipeline. BMC Bioinformatics. 2014;15():63. doi:10.1186/1471-2105-15-63"
PMC3957861::"Zhou Y, Fomovska A, et al. Spiroindolone That Inhibits PfATPase4 Is a Potent, Cidal Inhibitor of Toxoplasma gondii Tachyzoites In Vitro and In Vivo. Antimicrob Agents Chemother. 2014;58(3):1789-1792. doi:10.1128/AAC.02225-13"
|
MMV023949 |
CC(C)(C)c1cc(C(=O)N2CCN(CC2)c2nccnc2C#N)n(Cc2ccccc2)n1 |
|
PMC6690977::"Chua AC, Ong JJ, et al. Robust continuous in vitro culture of the Plasmodium cynomolgi erythrocytic stages. Nat Commun. 2019;10():3635. doi:10.1038/s41467-019-11332-4"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
|
Piperaquine |
c1cc2c(ccnc2cc1Cl)N3CCN(CC3)CCCN4CCN(CC4)c5ccnc6c5ccc(c6)Cl |
PF3D7_0709000::chloroquine+resistance+transporter+%28CRT%29::SNP::Pf3D7_07_v3::403700::p.Cys101Phe/c.302G>T
PF3D7_0912500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::557639::p.Arg247Ser/c.739C>A
PF3D7_0920000::long+chain+fatty+acid+elongation+enzyme%2C+putative::SNP::Pf3D7_09_v3::824044::p.Leu460Leu/c.1380T>A
::::INDEL::Pf3D7_01_v3::5692::n.5693delA
::::INDEL::Pf3D7_01_v3::5694::n.5694_5695insGG
::::INDEL::Pf3D7_01_v3::5696::n.5697delT
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC6553790::"Stokes BH, Yoo E, et al. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog. 2019;15(6):e1007722. doi:10.1371/journal.ppat.1007722"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC6060173::"Llanos-Cuentas A, Casapia M, et al. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infect Dis. 2018;18(8):874-883. doi:10.1016/S1473-3099(18)30309-8"
PMC5708124::"Vanaerschot M, Lucantoni L, et al. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity. Nat Microbiol. 2017;2(10):1403-1414. doi:10.1038/s41564-017-0007-4"
PMC5424201::"Dhingra SK, Redhi D, et al. A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. mBio. 2017;8(3):e00303-17. doi:10.1128/mBio.00303-17"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4958522::"Ng CL, Siciliano G, et al. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs. Mol Microbiol. 2016;101(3):381-393. doi:10.1111/mmi.13397"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC4135840::"Kuhen KL, Chatterjee AK, et al. KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrob Agents Chemother. 2014;58(9):5060-5067. doi:10.1128/AAC.02727-13"
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMC3147642::"Eastman RT, Dharia NV, et al. Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured Plasmodium falciparum Parasites. Antimicrob Agents Chemother. 2011;55(8):3908-3916. doi:10.1128/AAC.01793-10"
PMC7229487::"Penny MA, Camponovo F, et al. Future use-cases of vaccines in malaria control and elimination. Parasite Epidemiol Control. 2020;10():e00145. doi:10.1016/j.parepi.2020.e00145"
PMC7188074::"Chen R, Lu X, et al. Dihydroartemisinin Prevents Progression and Metastasis of Head and Neck Squamous Cell Carcinoma by Inhibiting Polarization of Macrophages in Tumor Microenvironment. Onco Targets Ther. 2020;13():3375-3387. doi:10.2147/OTT.S249046"
PMC7190888::"Sugiarto SR, Moore BR, et al. Artemisinin Therapy for Malaria in Hemoglobinopathies: A Systematic Review. Clin Infect Dis. 2018;66(5):799-804. doi:10.1093/cid/cix785"
PMC7185243::"Abugri J, Ansah F, et al. Prevalence of chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from three areas in Ghana. AAS Open Res. 2018;1():1. doi:10.12688/aasopenres.12825.1"
PMC7174163::"Rouamba T, Sondo P, et al. Optimal Approach and Strategies to Strengthen Pharmacovigilance in Sub-Saharan Africa: A Cohort Study of Patients Treated with First-Line Artemisinin-Based Combination Therapies in the Nanoro Health and Demographic Surveillance System, Burkina Faso. Drug Des Devel Ther. 2020;14():1507-1521. doi:10.2147/DDDT.S224857"
PMC7184019::"Minodier P, Imbert P Conduite à tenir devant un enfant fébrile au retour de voyage. J Pediatr Pueric. 2020;():. doi:10.1016/j.jpp.2020.04.002"
PMC7179595::"Wilkinson MD, Lai HE, et al. A Biosynthetic Platform for Antimalarial Drug Discovery. Antimicrob Agents Chemother. 2020;64(5):e02129-19. doi:10.1128/AAC.02129-19"
PMC7179297::"Rottmann M, Jonat B, et al. Preclinical Antimalarial Combination Study of M5717, a Plasmodium falciparum Elongation Factor 2 Inhibitor, and Pyronaridine, a Hemozoin Formation Inhibitor. Antimicrob Agents Chemother. 2020;64(4):e02181-19. doi:10.1128/AAC.02181-19"
PMC7179279::"Jones S, Plucinski M, et al. A Computer Modelling Approach To Evaluate the Accuracy of Microsatellite Markers for Classification of Recurrent Infections during Routine Monitoring of Antimalarial Drug Efficacy. Antimicrob Agents Chemother. 2020;64(4):e01517-19. doi:10.1128/AAC.01517-19"
PMC7175533::"Moreno-Gutierrez D, Rosas-Aguirre A, et al. Economic costs analysis of uncomplicated malaria case management in the Peruvian Amazon. Malar J. 2020;19():161. doi:10.1186/s12936-020-03233-5"
PMC7175519::"Mwaiswelo R, Ngasala B Evaluation of residual submicroscopic Plasmodium falciparum parasites 3 days after initiation of treatment with artemisinin-based combination therapy. Malar J. 2020;19():162. doi:10.1186/s12936-020-03235-3"
PMC7160563::"Angwa LM, Ouma C, et al. Acceptability, adherence, and clinical outcomes, of amoxicillin dispersible tablets versus oral suspension in treatment of children aged 2–59 Months with pneumonia, Kenya: A cluster randomized controlled trial. Heliyon. 2020;6(4):e03786. doi:10.1016/j.heliyon.2020.e03786"
PMC7149848::"Li Y, Shetty AC, et al. Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces. Int J Health Geogr. 2020;19():13. doi:10.1186/s12942-020-00207-3"
PMID32437557::"Rovira-Vallbona E, Van Hong N, et al. Efficacy of dihydroartemisinin/piperaquine and artesunate monotherapy for the treatment of uncomplicated Plasmodium falciparum malaria in Central Vietnam.. J Antimicrob Chemother. 2020;():. doi:3"
PMID32312783::"Wattanakul T, Ogutu B, et al. Cardiovascular safety and population pharmacokinetic properties of piperaquine in African patients with uncomplicated <i>falciparum</i> malaria - a pooled multicentre analysis.. Antimicrob Agents Chemother. 2020;():. doi:3"
PMID32314694::"Chughlay MF, Akakpo S, et al. Liver Enzyme Elevations in <i>Plasmodium falciparum</i> Volunteer Infection Studies: Findings and Recommendations.. Am J Trop Med Hyg. 2020;():. doi:3"
PMID32171078::"van der Pluijm RW, Tripura R, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial.. Lancet. 2020;395(10233):1345-1360. doi:3"
PMID32211790::"Roesch C, Mairet-Khedim M, et al. Impact of the first-line treatment shift from dihydroartemisinin/piperaquine to artesunate/mefloquine on Plasmodium vivax drug susceptibility in Cambodia.. J Antimicrob Chemother. 2020;():. doi:3"
PMC7161105::"Lek D, Callery JJ, et al. Tools to accelerate falciparum malaria elimination in Cambodia: a meeting report. Malar J. 2020;19():151. doi:10.1186/s12936-020-03197-6"
PMC6889437::"Byakika-Kibwika P, Ssenyonga R, et al. Piperaquine concentration and malaria treatment outcomes in Ugandan children treated for severe malaria with intravenous Artesunate or quinine plus Dihydroartemisinin-Piperaquine. BMC Infect Dis. 2019;19():1025. doi:10.1186/s12879-019-4647-2"
PMC6943240::"Dhingra SK, Small-Saunders JL, et al. Plasmodium falciparum resistance to piperaquine driven by PfCRT. Lancet Infect Dis. 2019;19(11):1168-1169. doi:10.1016/S1473-3099(19)30543-2"
PMID31833468::"Han KT, Lin K, et al. Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine Retain High Efficacy for Treatment of Uncomplicated <i>Plasmodium falciparum</i> Malaria in Myanmar.. Am J Trop Med Hyg. 2020;102(3):598-604. doi:3"
PMC6915931::"Pull L, Lupoglazoff JM, et al. Artenimol–piperaquine in children with uncomplicated imported falciparum malaria: experience from a prospective cohort. Malar J. 2019;18():419. doi:10.1186/s12936-019-3047-9"
PMC6708145::"Foguim Tsombeng F, Gendrot M, et al. Are k13 and plasmepsin II genes, involved in Plasmodium falciparum resistance to artemisinin derivatives and piperaquine in Southeast Asia, reliable to monitor resistance surveillance in Africa?. Malar J. 2019;18():285. doi:10.1186/s12936-019-2916-6"
PMID31697848::"Kobylinski KC, Jittamala P, et al. Safety, Pharmacokinetics, and Mosquito-Lethal Effects of Ivermectin in Combination With Dihydroartemisinin-Piperaquine and Primaquine in Healthy Adult Thai Subjects.. Clin Pharmacol Ther. 2020;107(5):1221-1230. doi:3"
PMC6658739::"Hanboonkunupakarn B, van der Pluijm RW, et al. Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother. 2019;63(8):e00060-19. doi:10.1128/AAC.00060-19"
PMID31580888::"Li X, Xu Z, et al. Sub-acute toxicological study of artemisinin-piperaquine tablets in rhesus monkeys.. Regul Toxicol Pharmacol. 2019;109():104486. doi:3"
PMID31876497::"Silva M, Calçada C, et al. Multigenic architecture of piperaquine resistance trait in Plasmodium falciparum.. Lancet Infect Dis. 2020;20(1):26-27. doi:3"
PMC6715822::"van der Pluijm RW, Imwong M, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019;19(9):952-961. doi:10.1016/S1473-3099(19)30391-3"
PMC7238349::"Oladeji OS, Oluyori AP, et al. Natural Products as Sources of Antimalarial Drugs: Ethnobotanical and Ethnopharmacological Studies. Scientifica (Cairo). 2020;2020():7076139. doi:10.1155/2020/7076139"
PMC7235487::"Abdulla A, Wang B, et al. Project IDentif.AI: Harnessing Artificial Intelligence to Rapidly Optimize Combination Therapy Development for Infectious Disease Intervention. Adv Ther (Weinh). 2020;():2000034. doi:10.1002/adtp.202000034"
PMC7213813::"Meteke S, Stefopulos M, et al. Delivering infectious disease interventions to women and children in conflict settings: a systematic review. BMJ Glob Health. 2020;5(Suppl 1):e001967. doi:10.1136/bmjgh-2019-001967"
PMC7217694::"Mathieu LC, Cox H, et al. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. eLife. 2020;9():e51015. doi:10.7554/eLife.51015"
PMC7192906::"Verity R, Aydemir O, et al. The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC. Nat Commun. 2020;11():2107. doi:10.1038/s41467-020-15779-8"
PMC7216766::"Lubis IN, Wijaya H, et al. Recurrence of Plasmodium malariae and P. falciparum Following Treatment of Uncomplicated Malaria in North Sumatera With Dihydroartemisinin-Piperaquine or Artemether-Lumefantrine. Open Forum Infect Dis. 2020;7(5):ofaa116. doi:10.1093/ofid/ofaa116"
PMID31173649::"Whalen ME, Kajubi R, et al. Reduced Exposure to Piperaquine, Compared to Adults, in Young Children Receiving Dihydroartemisinin-Piperaquine as Malaria Chemoprevention.. Clin Pharmacol Ther. 2019;106(6):1310-1318. doi:3"
PMC6891957::"Omondi P, Burugu M, et al. Gametocyte clearance in children, from western Kenya, with uncomplicated Plasmodium falciparum malaria after artemether–lumefantrine or dihydroartemisinin–piperaquine treatment. Malar J. 2019;18():398. doi:10.1186/s12936-019-3032-3"
PMC6922314::"Naing C, Whittaker MA, et al. Efficacy of antimalarial drugs for treatment of uncomplicated falciparum malaria in Asian region: A network meta-analysis. PLoS One. 2019;14(12):e0225882. doi:10.1371/journal.pone.0225882"
PMC6754981::"Ménard D, Fidock DA Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia. Lancet Infect Dis. 2019;19(9):916-917. doi:10.1016/S1473-3099(19)30394-9"
|
MMV007224 |
Brc1ccc(Nc2nc3ccccc3nc2Nc2ccc(Br)cc2)cc1 |
PF3D7_0205300::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_02_v3::220634::S315R
PF3D7_0302300::erythrocyte+membrane+protein+1+%28PfEMP1%29%2C+pseudogene::SNP::Pf3D7_03_v3::126526::S1237T
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1418277::V2367I
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1418284::Y2364
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1418287::I2363
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1418777::A2200G
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1418778::A2200T
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1418781::R2199G
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::SNP::Pf3D7_07_v3::1418786::A2197V
PF3D7_0922000::dynein+intermediate+chain+2%2C+ciliary::SNP::Pf3D7_09_v3::890525::
PF3D7_1338300::elongation+factor+1-gamma%2C+putative::SNP::Pf3D7_13_v3::1548892::
PF3D7_1356800::serine%2Fthreonine+protein+kinase%2C+putative+%28ARK3%29::SNP::Pf3D7_13_v3::2255775::G2063
PF3D7_1361100::Sec24+subunit+a+%28SEC24a%29::SNP::Pf3D7_13_v3::2451006::M182I
PF3D7_1434000::CCR4-associated+factor+16%2C+putative+%28CAF16%29::SNP::Pf3D7_14_v3::1365179::H189Q
PF3D7_1472100::Yip1+protein%2C+putative::SNP::Pf3D7_14_v3::2942394::S215N
PF3D7_0629500::amino+acid+transporter%2C+putative::INDEL::Pf3D7_06_v3::1215602::-135I
PF3D7_0733000::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_07_v3::1418289::D2362DMT
PF3D7_0823300::histone+acetyltransferase+GCN5+%28GCN5%29::INDEL::Pf3D7_08_v3::1031193::K815-
PF3D7_1125000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_11_v3::985117::
PF3D7_1240400::erythrocyte+membrane+protein+1%2C+PfEMP1+%28VAR%29::INDEL::Pf3D7_12_v3::1709660::T1717TPAPAPA
PF3D7_1352000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2073169::DNNNNYYYH1285D
PF3D7_1359900::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2396269::-99
PF3D7_1434000::CCR4-associated+factor+16%2C+putative+%28CAF16%29::INDEL::Pf3D7_14_v3::1364864::
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC6938011::"de Souza GE, Bueno RV, et al. Antiplasmodial profile of selected compounds from Malaria Box: in vitro evaluation, speed of action and drug combination studies. Malar J. 2019;18():447. doi:10.1186/s12936-019-3069-3"
PMC6119338::"Douglas RG, Reinig M, et al. Screening for potential prophylactics targeting sporozoite motility through the skin. Malar J. 2018;17():319. doi:10.1186/s12936-018-2469-0"
PMC5371198::"Bergquist R, Utzinger J, et al. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative?. Infect Dis Poverty. 2017;6():74. doi:10.1186/s40249-017-0286-2"
PMC4788259::"Stadelmann B, Rufener R, et al. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis. PLoS Negl Trop Dis. 2016;10(3):e0004535. doi:10.1371/journal.pntd.0004535"
PMC4890880::"Swann J, Corey V, et al. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infect Dis. 2016;2(4):281-293. doi:10.1021/acsinfecdis.5b00143"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
PMC3886923::"Ingram-Sieber K, Cowan N, et al. Orally Active Antischistosomal Early Leads Identified from the Open Access Malaria Box. PLoS Negl Trop Dis. 2014;8(1):e2610. doi:10.1371/journal.pntd.0002610"
|
lopinavir |
Cc1cccc(c1OCC(=O)N[C@@H](Cc2ccccc2)[C@H](C[C@H](Cc3ccccc3)NC(=O)[C@H](C(C)C)N4CCCNC4=O)O)C |
PF3D7_0520700::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_05_v3::847950::p.Ile273Thr/c.818T>C
PF3D7_1229100::ABC+transporter%2C+%28CT+family%29+%28MRP2%29::SNP::Pf3D7_12_v3::1192907::p.Gln2103Pro/c.6308A>C
PF3D7_0710200::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_07_v3::465757::p.Glu885Gln/c.2653G>C
PF3D7_0501400::interspersed+repeat+antigen+%28FIRA%29::INDEL::Pf3D7_05_v3::75619::p.Ala318_Pro335del/c.951_1004delTGCGACAACACAAGAACCTGTGACAACACAAGAACCAGTAACACCACAAGAACC
PF3D7_0206800::merozoite+surface+protein+2+%28MSP2%29::INDEL::Pf3D7_02_v3::274276::p.Gly74_Gly77del/c.220_231delGGTAGTGCTGGT
PF3D7_1322400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::951902::p.Lys198_His199insGluLys/c.588_593dupGGAAAA
PF3D7_0404600::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_04_v3::249462::p.Gln578*/c.1732C>T
PF3D7_1250200::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_12_v3::2059832::p.Asn242Ile/c.725A>T
PF3D7_0103500::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_01_v3::158690::p.Thr1460Ile/c.4379C>T
PF3D7_1001400::alpha%2Fbeta+hydrolase%2C+putative::SNP::Pf3D7_10_v3::74664::p.Val921Val/c.2763A>G
PF3D7_0919900::regulator+of+chromosome+condensation%2C+putative::INDEL::Pf3D7_09_v3::810039::p.Asp3250_Asp3255del/c.9748_9765delGACCAAAGTTTTTGTGAT
PF3D7_1228800::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_12_v3::1176370::p.Asn939dup/c.2814_2816dupTAA
PF3D7_0615700::RNA+and+export+factor+binding+protein%2C+putative::INDEL::Pf3D7_06_v3::657202::c.312+56_312+57insATAT
PF3D7_0718000::dynein+heavy+chain%2C+putative::INDEL::Pf3D7_07_v3::776396::c.17425+62_17425+65delAATA
PF3D7_1328300::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::1196734::c.564+72_565-71insTATA
PF3D7_1364400::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2593546::p.Asn2858_Asn2859dup/c.8573_8578dupATAATA
PF3D7_0802100::transcription+factor+with+AP2+domain%28s%29+%28ApiAP2%29::INDEL::Pf3D7_08_v3::153185::p.Asn2158_Asn2161del/c.6472_6483delAATAATAATAAT
|
PMC7251410::"Klement-Frutos E, Burrel S, et al. Early administration of ritonavir-boosted lopinavir could prevent severe COVID-19. J Infect. 2020;():. doi:10.1016/j.jinf.2020.05.039"
PMC7251400::"Salazar E, Perez KK, et al. Treatment of COVID-19 Patients with Convalescent Plasma. Am J Pathol. 2020;():. doi:10.1016/j.ajpath.2020.05.014"
PMC7251321::"Fajgenbaum DC, Khor JS, et al. Treatments Administered to the First 9152 Reported Cases of COVID-19: A Systematic Review. Infect Dis Ther. 2020;():1-15. doi:10.1007/s40121-020-00303-8"
PMC7251044::"Hodkinson B, Singh P, et al. Navigating COVID-19 in the developing world. Clin Rheumatol. 2020;():1-4. doi:10.1007/s10067-020-05159-4"
PMC7250585::"De Nardi P, Parolini DC, et al. Bowel perforation in a Covid-19 patient: case report. Int J Colorectal Dis. 2020;():1-4. doi:10.1007/s00384-020-03627-6"
PMC7250542::"Rahman MT, Idid SZ Can Zn Be a Critical Element in COVID-19 Treatment?. Biol Trace Elem Res. 2020;():1-9. doi:10.1007/s12011-020-02194-9"
PMC7250281::Sun D. Remdesivir for Treatment of COVID-19: Combination of Pulmonary and IV Administration May Offer Aditional Benefit. AAPS J. 2020;22(4):77. doi:10.1208/s12248-020-00459-8
PMC7250074::"Yang L, Liu J, et al. Epidemiological and clinical features of 200 hospitalized patients with Corona Virus Disease 2019 outside Wuhan, China: A descriptive study. J Clin Virol. 2020;():104475. doi:10.1016/j.jcv.2020.104475"
PMC7246105::"Addeo A, Obeid M, et al. COVID-19 and lung cancer: risks, mechanisms and treatment interactions. J Immunother Cancer. 2020;8(1):e000892. doi:10.1136/jitc-2020-000892"
PMC7237600::"Badowski M, Pérez SE, et al. Two’s a Company, Three’s a Crowd: A Review of Initiating or Switching to a Two-Drug Antiretroviral Regimen in Treatment-Naïve and Treatment-Experienced Patients Living with HIV-1. Infect Dis Ther. 2020;9(2):185-208. doi:10.1007/s40121-020-00290-w"
PMC7237591::Padron-Regalado E. Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. Infect Dis Ther. 2020;9(2):255-274. doi:10.1007/s40121-020-00300-x
PMC7249980::"Ogar C, Mathenge W, et al. The challenging times and opportunities for pharmacovigilance in Africa during the COVID-19 pandemic. Drugs Ther Perspect. 2020;():1-4. doi:10.1007/s40267-020-00748-4"
PMC7249615::"Depfenhart M, de Villiers D, et al. Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy?. Intern Emerg Med. 2020;():1-12. doi:10.1007/s11739-020-02383-3"
PMC7247958::"Rastogi YR, Sharma A, et al. The novel coronavirus 2019-nCoV: Its evolution and transmission into humans causing global COVID-19 pandemic. Int J Environ Sci Technol (Tehran). 2020;():1-8. doi:10.1007/s13762-020-02781-2"
PMC7247474::"Owa AB, Owa OT Lopinavir/ritonavir use in Covid-19 infection: is it completely non-beneficial?. J Microbiol Immunol Infect. 2020;():. doi:10.1016/j.jmii.2020.05.014"
PMC7246222::"Rogado J, Obispo B, et al. Covid-19 transmission, outcome and associated risk factors in cancer patients at the first month of the pandemic in a Spanish hospital in Madrid. Clin Transl Oncol. 2020;():1-5. doi:10.1007/s12094-020-02381-z"
PMC7245990::"Maurya VK, Kumar S, et al. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease. 2020;():1-15. doi:10.1007/s13337-020-00598-8"
PMC7245324::"Ceccarelli G, Alessandri F, et al. IS TEICOPLANIN A COMPLEMENTARY TREATMENT OPTION FOR COVID-19? THE QUESTION REMAINS. Int J Antimicrob Agents. 2020;():106029. doi:10.1016/j.ijantimicag.2020.106029"
PMC7245249::"Yang CW, Peng TT, et al. Repurposing old drugs as antiviral agents for coronaviruses. Biomed J. 2020;():. doi:10.1016/j.bj.2020.05.003"
PMC7245197::Manus JM. « Covid-19 : naviguer dans l’inconnu ». Rev Francoph Lab. 2020;2020(522):17. doi:10.1016/S1773-035X(20)30154-4
PMC7034032::"Granato MQ, Sousa IS, et al. Aspartic peptidase of Phialophora verrucosa as target of HIV peptidase inhibitors: blockage of its enzymatic activity and interference with fungal growth and macrophage interaction. J Enzyme Inhib Med Chem. 2020;35(1):629-638. doi:10.1080/14756366.2020.1724994"
PMC7211645::"Cattaneo D, Corbellino M, et al. Does lopinavir really inhibit SARS-CoV-2?. Pharmacol Res. 2020;():104898. doi:10.1016/j.phrs.2020.104898"
PMC7232887::"Adeoye AO, Oso BJ, et al. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. J Biomol Struct Dyn. 2020;():1-11. doi:10.1080/07391102.2020.1765876"
PMID32460458::
PMC7195393::"Zhu Z, Lu Z, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020;():. doi:10.1016/j.jinf.2020.03.060"
PMC7235585::"Li Y, Xie Z, et al. Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: an exploratory randomized controlled trial. . 2020;():. doi:10.1016/j.medj.2020.04.001"
PMC7232130::"Huang M, Tang T, et al. Treating COVID-19 with Chloroquine. J Mol Cell Biol. 2020;12(4):322-325. doi:10.1093/jmcb/mjaa014"
PMC7184878::"Nutho B, Mahalapbutr P, et al. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms. Biochemistry. 2020;():acs.biochem.0c00160. doi:10.1021/acs.biochem.0c00160"
PMC7128271::Sisay M. 3CLpro inhibitors as a potential therapeutic option for COVID-19: Available evidence and ongoing clinical trials. Pharmacol Res. 2020;156():104779. doi:10.1016/j.phrs.2020.104779
PMID32400965::"Xia T, Wang Y Coronavirus disease 2019 and transplantation: The combination of lopinavir/ritonavir and hydroxychloroquine is responsible for excessive tacrolimus trough level and unfavorable outcome.. Am J Transplant. 2020;():. doi:3"
PMID32273604::Stower H. Lopinavir-ritonavir in severe COVID-19.. Nat Med. 2020;26(4):465. doi:3
PMC7192121::"Zhong H, Wang Y, et al. Efficacy and safety of current therapeutic options for COVID-19 - lessons to be learnt from SARS and MERS epidemic: A systematic review and meta-analysis. Pharmacol Res. 2020;():104872. doi:10.1016/j.phrs.2020.104872"
PMID32401368::"Chong VH, Chong PL, et al. Conduction abnormalities in hydroxychloroquine add on therapy to lopinavir/ritonavir in COVID-19.. J Med Virol. 2020;():. doi:3"
|
GNF-Pf-2775 |
C1CN(CCN1C2=NC=NC3=C2NC4=C3C=C(C=C4)F)C(C5=CC=CC=C5)C6=CC=CC=C6 |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
|
GNF-Pf-1618 |
CCC(C)(C)C1=CC=C(OCCOCC[N+]2=CC=CC=C2)C(=C1)C(C)(C)CC |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
Decoquinate |
OC1=C(C(OCC)=O)C=NC2=CC(OCC)=C(C=C12)OCCCCCCCCCC |
|
PMC6499835::"Skinner-Adams TS, Fisher GM, et al. Cyclization-blocked proguanil as a strategy to improve the antimalarial activity of atovaquone. Commun Biol. 2019;2():166. doi:10.1038/s42003-019-0397-3"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC5109296::"Magistrado PA, Corey VC, et al. Plasmodium falciparum Cyclic Amine Resistance Locus (PfCARL), a Resistance Mechanism for Two Distinct Compound Classes. ACS Infect Dis. 2016;2(11):816-826. doi:10.1021/acsinfecdis.6b00025"
PMC3880619::"Flannery EL, Fidock DA, et al. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):10.1021/jm400325j. doi:10.1021/jm400325j"
PMC3567157::"Bopp SE, Manary MJ, et al. Mitotic Evolution of Plasmodium falciparum Shows a Stable Core Genome but Recombination in Antigen Families. PLoS Genet. 2013;9(2):e1003293. doi:10.1371/journal.pgen.1003293"
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7165982::"Potter T, Barrett D, et al. Clinical Forum: Neonatal Diarrhoea. . 2012;17(7):20-28. doi:10.1111/j.2044-3870.2012.00160.x"
PMC7164767::"Jones CM, James RE, et al. Influence of Pooled Colostrum or Colostrum Replacement on IgG and Evaluation of Animal Plasma in Milk Replacer. J Dairy Sci. 2004;87(6):1806-1814. doi:10.3168/jds.S0022-0302(04)73337-8"
PMC7163673::EFSA Panel on Animal Health and Welfare (AHAW). Scientific Opinion on the welfare of cattle kept for beef production and the welfare in intensive calf farming systems. EFSA J. 2012;10(5):2669. doi:10.2903/j.efsa.2012.2669
PMC7157435::"Hart S, Delaney C Husbandry of Dairy Animals – Goat: Replacement Management. Reference Module in Food Science. 2016;():B978-0-08-100596-5.00822-2. doi:10.1016/B978-0-08-100596-5.00822-2"
PMC7152381:: Enteritis. Clinical Veterinary Advisor. 2012;():181-183. doi:10.1016/B978-1-4160-3969-3.00109-8
PMC7152368::Cebra C. Disorders of the Digestive System. Llama and Alpaca Care. 2013;():477-536. doi:10.1016/B978-1-4377-2352-6.00040-7
PMC7152230::"Peek SF, Mcguirk SM, et al. Infectious Diseases of the Gastrointestinal Tract. Rebhun's Diseases of Dairy Cattle. 2018;():249-356. doi:10.1016/B978-0-323-39055-2.00006-1"
PMC7152190:: Endoparasites. Clinical Veterinary Advisor. 2012;():448-450. doi:10.1016/B978-1-4160-3969-3.00204-3
PMC7152062::"Morrisey JK, Johnston MS Ferrets. Exotic Animal Formulary. 2017;():532-557. doi:10.1016/B978-0-323-44450-7.00011-4"
PMC7151948::"Wolfe BA. Bovidae (Except Sheep and Goats) and Antilocapridae. Fowler's Zoo and Wild Animal Medicine, Volume 8. 2014;():626-645. doi:10.1016/B978-1-4557-7397-8.00063-3"
PMC7150360::"Hart S, Delaney C Husbandry of Dairy Animals | Goat: Replacement Management. Encyclopedia of Dairy Sciences. 2011;():825-833. doi:10.1016/B978-0-12-374407-4.00235-1"
PMC7150056::"Brabb T, Newsome D, et al. Infectious Diseases. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. 2011;():637-683. doi:10.1016/B978-0-12-380920-9.00023-7"
PMC7149768::"Blowey RW, Weaver AD Neonatal disorders. Color Atlas of Diseases and Disorders of Cattle. 2011;():13-28. doi:10.1016/B978-0-7234-3602-7.00008-X"
PMC7149567::MENZIES PI. Lambing Management and Neonatal Care. Current Therapy in Large Animal Theriogenology. 2007;():680-695. doi:10.1016/B978-072169323-1.50094-5
PMC7135391::"Roth JA, Perino LJ Immunology and Prevention of Infection in Feedlot Cattle. Vet Clin North Am Food Anim Pract. 1998;14(2):233-256. doi:10.1016/S0749-0720(15)30252-8"
PMC7135340::"Paraud C, Chartier C Cryptosporidiosis in small ruminants. Small Rumin Res. 2011;103(1):93-97. doi:10.1016/j.smallrumres.2011.10.023"
PMC7127407::Constable PD. Treatment of Calf Diarrhea: Antimicrobial and Ancillary Treatments. Vet Clin North Am Food Anim Pract. 2009;25(1):101-120. doi:10.1016/j.cvfa.2008.10.012
PMC7127282::"de Graaf DC, Vanopdenbosch E, et al. A review of the importance of cryptosporidiosis in farm animals. Int J Parasitol. 2000;29(8):1269-1287. doi:10.1016/S0020-7519(99)00076-4"
PMC7126089::Whitehead CE. Neonatal Diseases in Llamas and Alpacas. Vet Clin North Am Food Anim Pract. 2009;25(2):367-384. doi:10.1016/j.cvfa.2009.03.002
PMC7121861::"Samanta I, Bandyopadhyay S Infectious Diseases. Pet bird diseases and care. 2017;():13-166. doi:10.1007/978-981-10-3674-3_2"
PMID32266373::"Bai Y, Liu T, et al. Feeding an amino acid formulated milk replacer for Holstein calves.. J Anim Sci. 2020;98(4):. doi:3"
PMID30604176::"van Zyl L, Viljoen JM, et al. Topical Delivery of Artemisone, Clofazimine and Decoquinate Encapsulated in Vesicles and Their In vitro Efficacy Against Mycobacterium tuberculosis.. AAPS PharmSciTech. 2019;20(1):33. doi:3"
PMID30253854::"Jiménez-Meléndez A, Rico-San Román L, et al. Repurposing of commercially available anti-coccidials identifies diclazuril and decoquinate as potential therapeutic candidates against Besnoitia besnoiti infection.. Vet Parasitol. 2018;261():77-85. doi:3"
PMID30088097::"Burger C, Aucamp M, et al. Formulation of Natural Oil Nano-Emulsions for the Topical Delivery of Clofazimine, Artemisone and Decoquinate.. Pharm Res. 2018;35(10):186. doi:3"
PMC6611755::"Noack S, Chapman HD, et al. Anticoccidial drugs of the livestock industry. Parasitol Res. 2019;118(7):2009-2026. doi:10.1007/s00436-019-06343-5"
PMID29544560::"Preez JLD, Aucamp ME, et al. Development and validation of the simultaneous determination of artemisone, clofazimine and decoquinate with HPLC.. Pharmazie. 2018;73(3):139-142. doi:3"
PMC6387968::"Tanner L, Haynes RK, et al. An in vitro ADME and in vivo Pharmacokinetic Study of Novel TB-Active Decoquinate Derivatives. Front Pharmacol. 2019;10():120. doi:10.3389/fphar.2019.00120"
PMC7118476::"DEC M, PUCHALSKI A, et al. Susceptibility of chicken Lactobacillus bacteria to coccidiostats. J Vet Med Sci. 2020;82(3):333-336. doi:10.1292/jvms.19-0533"
PMID31202645::"Wood DR, Blome RM, et al. Short communication: Effects of porcine plasma or combined sodium butyrate and Bacillus subtilis on growth and health of grain-fed veal calves.. J Dairy Sci. 2019;102(8):7183-7188. doi:3"
PMID30724247::"Dasenaki ME, Thomaidis NS Multi-residue methodology for the determination of 16 coccidiostats in animal tissues and eggs by hydrophilic interaction liquid chromatography - Tandem mass spectrometry.. Food Chem. 2019;275():668-680. doi:3"
PMC5406721::"Li Q, Xie L, et al. Long-Term Prophylaxis and Pharmacokinetic Evaluation of Intramuscular Nano- and Microparticle Decoquinate in Mice Infected with P. berghei Sporozoites. Malar Res Treat. 2017;2017():7508291. doi:10.1155/2017/7508291"
PMC7039275::Dube A. Nanomedicines for Infectious Diseases. Pharm Res. 2019;36(4):63. doi:10.1007/s11095-019-2603-x
PMID29648988::"Pietruk K, Olejnik M, et al. Coccidiostats in milk: development of a multi-residue method and transfer of salinomycin and lasalocid from contaminated feed.. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018;35(8):1508-1518. doi:3"
PMID27210430::"Beteck RM, Coertzen D, et al. Straightforward conversion of decoquinate into inexpensive tractable new derivatives with significant antimalarial activities.. Bioorg Med Chem Lett. 2016;26(13):3006-3009. doi:3"
PMC5343410::"Tan L, Li Y, et al. Genetic diversity and drug sensitivity studies on Eimeria tenella field isolates from Hubei Province of China. Parasit Vectors. 2017;10():137. doi:10.1186/s13071-017-2067-y"
PMID25952987::"Olejnik M, Szprengier-Juszkiewicz T Deposition and depletion of decoquinate in eggs after administration of cross-contaminated feed.. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(7):1124-8. doi:3"
PMC6340160::"Sánchez-Sánchez R, Vázquez P, et al. Treatment of Toxoplasmosis and Neosporosis in Farm Ruminants: State of Knowledge and Future Trends. Curr Top Med Chem. 2018;18(15):1304-1323. doi:10.2174/1568026618666181002113617"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMID28665718::"Barrios MA, Da Costa M, et al. Relationship Between Broiler Body Weights, Eimeria maxima Gross Lesion Scores, and Microscores in Three Anticoccidial Sensitivity Tests.. Avian Dis. 2017;61(2):237-241. doi:3"
PMC6591700::"Yahiya S, Rueda-Zubiaurre A, et al. The antimalarial screening landscape—looking beyond the asexual blood stage. Curr Opin Chem Biol. 2019;50():1-9. doi:10.1016/j.cbpa.2019.01.029"
PMC6591617::"Sánchez-Sánchez R, Ferre I, et al. Treatment with Bumped Kinase Inhibitor 1294 Is Safe and Leads to Significant Protection against Abortion and Vertical Transmission in Sheep Experimentally Infected with Toxoplasma gondii during Pregnancy. Antimicrob Agents Chemother. 2019;63(7):e02527-18. doi:10.1128/AAC.02527-18"
PMID23891618::"Wang H, Li Q, et al. Nanoparticle formulations of decoquinate increase antimalarial efficacy against liver stage Plasmodium infections in mice.. Nanomedicine. 2014;10(1):57-65. doi:3"
PMID28805907::"Froehlich KA, Abdelsalam KW, et al. Evaluation of essential oils and prebiotics for newborn dairy calves.. J Anim Sci. 2017;95(8):3772-3782. doi:3"
PMID27902917::"Gerhold RW, Fuller AL, et al. Coccidiosis in the Chukar Partridge ( Alectoris chukar ): A Survey of Coccidiosis Outbreaks and a Test of Anticoccidial Drugs Against Eimeria kofoidi.. Avian Dis. 2016;60(4):752-757. doi:3"
PMID23523012::"Lindsay DS, Nazir MM, et al. Efficacy of decoquinate against Sarcocystis neurona in cell cultures.. Vet Parasitol. 2013;196(1-2):21-3. doi:3"
|
TCMDC-124553 |
CCc1cc2c(s1)ncnc2Sc3[nH]c4ccccc4n3 |
PF3D7_0100800::rifin%2CPIR+protein+%28RIF%29::SNP::Pf3D7_01_v3::59845::c.54+20G>T
PF3D7_0222800::stevor%2CPIR+protein::SNP::Pf3D7_02_v3::899713::p.His61His/c.183T>C
PF3D7_0222800::stevor%2CPIR+protein::SNP::Pf3D7_02_v3::899719::p.Asp63Asp/c.189T>C
PF3D7_0618600::rhomboid+protease+ROM10+%28ROM10%29::SNP::Pf3D7_06_v3::777526::c.248+62T>A
PF3D7_0811700::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_08_v3::591635::p.Glu605Asp/c.1815A>T
PF3D7_0903300::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_09_v3::141018::p.Tyr14*/c.42T>A
PF3D7_0903300::conserved+Plasmodium+membrane+protein%2C+unknown+function::SNP::Pf3D7_09_v3::141578::p.Ile201Lys/c.602T>A
PF3D7_1027000::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_10_v3::1131581::p.Asp126Glu/c.378T>G
PF3D7_1200300::rifin%2CPIR+protein+%28RIF%29::SNP::Pf3D7_12_v3::30271::p.Ile282Thr/c.845T>C
PF3D7_1200300::rifin%2CPIR+protein+%28RIF%29::SNP::Pf3D7_12_v3::30787::p.Ala110Glu/c.329C>A
PF3D7_1200300::rifin%2CPIR+protein+%28RIF%29::SNP::Pf3D7_12_v3::30792::p.Ser108Ser/c.324A>G
PF3D7_1200300::rifin%2CPIR+protein+%28RIF%29::SNP::Pf3D7_12_v3::30867::p.Glu83Glu/c.249A>G
PF3D7_1205500::zinc+finger+protein%2C+putative::SNP::Pf3D7_12_v3::244876::p.His689Pro/c.2066A>C
PF3D7_1222600::transcription+factor+with+AP2+domain%28s%29+%28AP2-G%29::SNP::Pf3D7_12_v3::913823::p.Lys2207Asn/c.6621G>C
PF3D7_1318800::translocation+protein+SEC63+%28SEC63%29::SNP::Pf3D7_13_v3::775896::p.Arg284Gly/c.850A>G
PF3D7_1332900::isoleucine--tRNA+ligase%2C+putative::SNP::Pf3D7_13_v3::1352356::p.Cys502Tyr/c.1505G>A
PF3D7_1332900::isoleucine--tRNA+ligase%2C+putative::SNP::Pf3D7_13_v3::1352362::p.Val500Ala/c.1499T>C
PF3D7_1332900::isoleucine--tRNA+ligase%2C+putative::SNP::Pf3D7_13_v3::1352998::p.Ser288Ile/c.863G>T
PF3D7_1332900::isoleucine--tRNA+ligase%2C+putative::SNP::Pf3D7_13_v3::1353321::p.Glu180Asp/c.540A>C
PF3D7_0530800::CPW-WPC+family+protein::INDEL::Pf3D7_05_v3::1255799::c.131-67_131-66insAT
PF3D7_0703900::conserved+Plasmodium+membrane+protein%2C+unknown+function::INDEL::Pf3D7_07_v3::165611::p.Glu239_Asp262del/c.714_785delTGAAAATGACAAAAATGATGAAAATGACGAAAATGATGAAAATGACAAAAATGACAAAAATGACAAAAATGA
PF3D7_0718000::dynein+heavy+chain%2C+putative::INDEL::Pf3D7_07_v3::785264::p.Gly3005_Asp3016dup/c.9014_9049dupGTGCTTATGATGATGGTCTTGATAATGGTCATGATG
PF3D7_0816700::trafficking+protein+particle+complex+subunit+2-like+protein%2C+putative+%28TRAPPC2L%29::INDEL::Pf3D7_08_v3::767581::c.315+75_316-52delTATATATATATATATATATATATGTATATATT
PF3D7_1224300::polyadenylate-binding+protein%2C+putative+%28PABP%29::INDEL::Pf3D7_12_v3::990451::p.Ala611_Gln615del/c.1831_1845delGCAGCTCAACAACAA
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV1394623 |
CN(C)C1=NC(CN(CC2=NC(=NC(N)=N2)N(C)C)C23CC4CC(CC(C4)C2)C3)=NC(N)=N1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
DDD01250400 |
CCC1=CN=C(N)N=C1NC(C)C2=CC=C(C)C(=C2)C |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
DSM265 |
FS(F)(F)(F)(C1=CC=C(NC2=CC(C)=NC3=NC(C(F)(F)C)=NN23)C=C1)F |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC6553790::"Stokes BH, Yoo E, et al. Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents. PLoS Pathog. 2019;15(6):e1007722. doi:10.1371/journal.ppat.1007722"
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
PMC6060173::"Llanos-Cuentas A, Casapia M, et al. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infect Dis. 2018;18(8):874-883. doi:10.1016/S1473-3099(18)30309-8"
PMC5515376::"Kato N, Comer E, et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature. 2016;538(7625):344-349. doi:10.1038/nature19804"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7187626::"McCarthy JS, Rückle T, et al. A Single-Dose Combination Study with the Experimental Antimalarials Artefenomel and DSM265 To Determine Safety and Antimalarial Activity against Blood-Stage Plasmodium falciparum in Healthy Volunteers. Antimicrob Agents Chemother. 2019;64(1):e01371-19. doi:10.1128/AAC.01371-19"
PMC7179259::"Sinxadi P, Donini C, et al. Safety, Tolerability, Pharmacokinetics, and Antimalarial Activity of the Novel Plasmodium Phosphatidylinositol 4-Kinase Inhibitor MMV390048 in Healthy Volunteers. Antimicrob Agents Chemother. 2020;64(4):e01896-19. doi:10.1128/AAC.01896-19"
PMC7230869::"Álvarez-Bardón M, Pérez-Pertejo Y, et al. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar Drugs. 2020;18(4):187. doi:10.3390/md18040187"
PMC7198127::"Wockner LF, Hoffmann I, et al. Growth Rate of Plasmodium falciparum: Analysis of Parasite Growth Data from Malaria Volunteer Infection Studies. J Infect Dis. 2019;221(6):963-972. doi:10.1093/infdis/jiz557"
PMC7198115::"Andrews KA, Wesche D, et al. Model-Informed Drug Development for Malaria Therapeutics. Annu Rev Pharmacol Toxicol. 2017;58():567-582. doi:10.1146/annurev-pharmtox-010715-103429"
PMC6941357::"Charman SA, Andreu A, et al. An in vitro toolbox to accelerate anti-malarial drug discovery and development. Malar J. 2020;19():1. doi:10.1186/s12936-019-3075-5"
PMC6859820::"Lee MC, Lindner SE, et al. Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Brief Funct Genomics. 2019;18(5):281-289. doi:10.1093/bfgp/elz012"
PMC6851545::"Lacombe A, Maclean AE, et al. Identification of the Toxoplasma gondii mitochondrial ribosome, and characterisation of a protein essential for mitochondrial translation. Mol Microbiol. 2019;112(4):1235-1252. doi:10.1111/mmi.14357"
PMC6611227::"Garavito MF, Narvaez-Ortiz HY, et al. Phytophthora infestans Dihydroorotate Dehydrogenase Is a Potential Target for Chemical Control – A Comparison With the Enzyme From Solanum tuberosum. Front Microbiol. 2019;10():1479. doi:10.3389/fmicb.2019.01479"
PMC6627850::"Wang X, Miyazaki Y, et al. Identification of Plasmodium falciparum Mitochondrial Malate: Quinone Oxidoreductase Inhibitors from the Pathogen Box. Genes (Basel). 2019;10(6):471. doi:10.3390/genes10060471"
PMC6767918::"Black MH, Osinski A, et al. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science. 2019;364(6442):787-792. doi:10.1126/science.aaw7446"
PMC6859814::"Cowell AN, Winzeler EA The genomic architecture of antimalarial drug resistance. Brief Funct Genomics. 2019;18(5):314-328. doi:10.1093/bfgp/elz008"
PMC6592410::"Cheaveau J, Marasinghe D, et al. The Impact of Malaria on Liver Enzymes: A Retrospective Cohort Study (2010–2017). Open Forum Infect Dis. 2019;6(6):ofz234. doi:10.1093/ofid/ofz234"
PMC6504873::"Penzo M, de las Heras-Dueña L, et al. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci Rep. 2019;9():7005. doi:10.1038/s41598-019-42801-x"
PMC6553913::"Seilie AM, Chang M, et al. Beyond Blood Smears: Qualification of Plasmodium 18S rRNA as a Biomarker for Controlled Human Malaria Infections. Am J Trop Med Hyg. 2019;100(6):1466-1476. doi:10.4269/ajtmh.19-0094"
PMC6456166::"Ke H, Ganesan SM, et al. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS One. 2019;14(4):e0214023. doi:10.1371/journal.pone.0214023"
PMC6437518::"Collins KA, Rückle T, et al. DSM265 at 400 Milligrams Clears Asexual Stage Parasites but Not Mature Gametocytes from the Blood of Healthy Subjects Experimentally Infected with Plasmodium falciparum. Antimicrob Agents Chemother. 2019;63(4):e01837-18. doi:10.1128/AAC.01837-18"
PMC6431062::"Tse EG, Korsik M, et al. The past, present and future of anti-malarial medicines. Malar J. 2019;18():93. doi:10.1186/s12936-019-2724-z"
PMID31589372::"Agoni C, Salifu EY, et al. CF<sub>3</sub> -Pyridinyl Substitution on Antimalarial Therapeutics: Probing Differential Ligand Binding and Dynamical Inhibitory Effects of a Novel Triazolopyrimidine-Based Inhibitor on Plasmodium falciparum Dihydroorotate Dehydrogenase.. Chem Biodivers. 2019;16(12):e1900365. doi:3"
PMC6467762::"White J, Dhingra SK, et al. Identification and mechanistic understanding of dihydroorotate dehydrogenase point mutations in Plasmodium falciparum that confer in vitro resistance to the clinical candidate DSM265. ACS Infect Dis. 2018;5(1):90-101. doi:10.1021/acsinfecdis.8b00211"
PMC6049003:: Erratum. J Infect Dis. 2018;218(3):508. doi:10.1093/infdis/jiy351
PMID29909070::"Bélard S, Ramharter M DSM265: a novel drug for single-dose cure of Plasmodium falciparum malaria.. Lancet Infect Dis. 2018;18(8):819-820. doi:3"
PMC5853383::"Murphy SC, Duke ER, et al. A Randomized Trial Evaluating the Prophylactic Activity of DSM265 Against Preerythrocytic Plasmodium falciparum Infection During Controlled Human Malarial Infection by Mosquito Bites and Direct Venous Inoculation. J Infect Dis. 2017;217(5):693-702. doi:10.1093/infdis/jix613"
PMID31385706::"Ashton TD, Devine SM, et al. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials.. J Med Chem. 2019;62(23):10526-10562. doi:3"
PMID31801884::"Mandt REK, Lafuente-Monasterio MJ, et al. In vitro selection predicts malaria parasite resistance to dihydroorotate dehydrogenase inhibitors in a mouse infection model.. Sci Transl Med. 2019;11(521):. doi:3"
PMID32248693::"Kokkonda S, Deng X, et al. Lead Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series for the Treatment of Malaria.. J Med Chem. 2020;63(9):4929-4956. doi:3"
PMC6060172:: Corrections. Lancet Infect Dis. 2018;18(8):829-. doi:10.1016/S1473-3099(18)30412-2
PMC5821200::"Flannery EL, Foquet L, et al. Assessing drug efficacy against Plasmodium falciparum liver stages in vivo. JCI Insight. 2018;3(1):e92587. doi:10.1172/jci.insight.92587"
PMC5446410::"Sulyok M, Rückle T, et al. DSM265 for Plasmodium falciparum chemoprophylaxis: a randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect Dis. 2017;17(6):636-644. doi:10.1016/S1473-3099(17)30139-1"
PMC5446412::"McCarthy JS, Lotharius J, et al. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised study. Lancet Infect Dis. 2017;17(6):626-635. doi:10.1016/S1473-3099(17)30171-8"
PMC6073090::"Mathews ES, Odom John AR Tackling resistance: emerging antimalarials and new parasite targets in the era of elimination. F1000Res. 2018;7():F1000 Faculty Rev-1170. doi:10.12688/f1000research.14874.1"
PMC5148661::"Phillips MA, White KL, et al. A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor (DSM421) with improved drug-like properties for treatment and prevention of malaria. ACS Infect Dis. 2016;2(12):945-957. doi:10.1021/acsinfecdis.6b00144"
PMC6880284:: Corrections. Lancet Infect Dis. 2017;17(6):576-. doi:10.1016/S1473-3099(17)30277-3
PMID30529545::"Pippione AC, Sainas S, et al. Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies.. Eur J Med Chem. 2019;163():266-280. doi:3"
PMC4539048::"Phillips MA, Lotharius J, et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med. 2015;7(296):296ra111. doi:10.1126/scitranslmed.aaa6645"
PMC5438523::"Hanron AE, Billman ZP, et al. Multiplex, DNase-free one-step reverse transcription PCR for Plasmodium 18S rRNA and spliced gametocyte-specific mRNAs. Malar J. 2017;16():208. doi:10.1186/s12936-017-1863-3"
|
MMV019066 |
COC1=CC=CC=C1CNC(=O)CCN1C(=O)NC2=C(SC=C2)C1=O |
PF3D7_0826100::E3+ubiquitin-protein+ligase%2C+putative::SNP::Pf3D7_08_v3::1137037::S703F
PF3D7_1147500::farnesyltransferase+beta+subunit%2C+putative::SNP::Pf3D7_11_v3::1891054::A515V
PF3D7_1147500::farnesyltransferase+beta+subunit%2C+putative::SNP::Pf3D7_11_v3::1891055::A515T
PF3D7_0220800::cytoadherence+linked+asexual+protein+2+%28CLAG2%29::INDEL::Pf3D7_02_v3::839826::
PF3D7_1362400::calpain+%28Pcalp%29::INDEL::Pf3D7_13_v3::2498675::N918NDKSYDKSY
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
|
Suloctidil |
CCCCCCCCN[C@@H]([C@H](c1ccc(cc1)SC(C)C)O)C |
|
PMC7170414::"Agarwal L, Pothier DD Vasodilators and vasoactive substances for idiopathic sudden sensorineural hearing loss. Cochrane Database Syst Rev. 2009;2009(4):CD003422. doi:10.1002/14651858.CD003422.pub4"
PMC7066628::"Robertson L, Ghouri MA, et al. Antiplatelet and anticoagulant drugs for prevention of restenosis/reocclusion following peripheral endovascular treatment. Cochrane Database Syst Rev. 2012;2012(8):CD002071. doi:10.1002/14651858.CD002071.pub3"
PMC6669339::"Kean R, Ramage G Combined Antifungal Resistance and Biofilm Tolerance: the Global Threat of Candida auris. mSphere. 2019;4(4):e00458-19. doi:10.1128/mSphere.00458-19"
PMC6614446::"Yedida G, Milani M, et al. Apogossypol-mediated reorganisation of the endoplasmic reticulum antagonises mitochondrial fission and apoptosis. Cell Death Dis. 2019;10(7):521. doi:10.1038/s41419-019-1759-y"
PMC6491384::"Turanli B, Zhang C, et al. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine. 2019;42():386-396. doi:10.1016/j.ebiom.2019.03.009"
PMC6350982::"Varbanov HP, Kuttler F, et al. Screening-based approach to discover effective platinum-based chemotherapies for cancers with poor prognosis. PLoS One. 2019;14(1):e0211268. doi:10.1371/journal.pone.0211268"
PMC6200740::"Readhead B, Hartley BJ, et al. Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat Commun. 2018;9():4412. doi:10.1038/s41467-018-06515-4"
PMC5999115::Inchiosa MA Jr. Anti-tumor activity of phenoxybenzamine and its inhibition of histone deacetylases. PLoS One. 2018;13(6):e0198514. doi:10.1371/journal.pone.0198514
PMC6122095::Lajis AF. A Zebrafish Embryo as an Animal Model for the Treatment of Hyperpigmentation in Cosmetic Dermatology Medicine. Medicina (Kaunas). 2018;54(3):35. doi:10.3390/medicina54030035
PMC5974511::"Joachim RB, Altschuler GM, et al. The relative resistance of children to sepsis mortality: from pathways to drug candidates. Mol Syst Biol. 2018;14(5):e7998. doi:10.15252/msb.20177998"
PMC6491099::"Schumann J, Henrich EC, et al. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev. 2018;2018(1):CD009669. doi:10.1002/14651858.CD009669.pub3"
PMC5714866::"Sharma AK, Srivastava GN, et al. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches. Front Pharmacol. 2017;8():880. doi:10.3389/fphar.2017.00880"
PMC5642531::"Zeng B, Li J, et al. In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans. Oncotarget. 2017;8(41):69972-69982. doi:10.18632/oncotarget.19542"
PMC5293254::"Varbanov HP, Kuttler F, et al. Repositioning approved drugs for the treatment of problematic cancers using a screening approach. PLoS One. 2017;12(2):e0171052. doi:10.1371/journal.pone.0171052"
PMC3159983::"Spitzer M, Griffiths E, et al. Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol. 2011;7():499. doi:10.1038/msb.2011.31"
PMC4536076::"Zeniou M, Fève M, et al. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells. PLoS One. 2015;10(8):e0134793. doi:10.1371/journal.pone.0134793"
PMID14709594::"Piccioni F, Roman BR, et al. A screen for drugs that protect against the cytotoxicity of polyglutamine-expanded androgen receptor.. Hum Mol Genet. 2004;13(4):437-46. doi:3"
PMID18027916::"Kornhuber J, Tripal P, et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.. J Med Chem. 2008;51(2):219-37. doi:3"
PMC4521867::"Panic G, Vargas M, et al. Activity Profile of an FDA-Approved Compound Library against Schistosoma mansoni . PLoS Negl Trop Dis. 2015;9(7):e0003962. doi:10.1371/journal.pntd.0003962"
PMC4630471::"Lee KH, Kim GJ, et al. Correlation between Drug Market Withdrawals and Socioeconomic, Health, and Welfare Indicators Worldwide. J Korean Med Sci. 2015;30(11):1567-1576. doi:10.3346/jkms.2015.30.11.1567"
PMC3484860::"Baxendale S, Holdsworth CJ, et al. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech. 2012;5(6):773-784. doi:10.1242/dmm.010090"
PMC2632640::"Kemmer D, McHardy LM, et al. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis. BMC Microbiol. 2009;9():9. doi:10.1186/1471-2180-9-9"
PMC6851125::"Yokoyama S, Sugimoto Y, et al. Integrative analysis of clinical and bioinformatics databases to identify anticancer properties of digoxin. Sci Rep. 2019;9():16597. doi:10.1038/s41598-019-53392-y"
PMC6454888::"de Oliveira HC, Monteiro MC, et al. Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen Candida auris. Front Cell Infect Microbiol. 2019;9():83. doi:10.3389/fcimb.2019.00083"
PMC6153848::"Wall G, Chaturvedi AK, et al. Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development. Antimicrob Agents Chemother. 2018;62(10):e01084-18. doi:10.1128/AAC.01084-18"
PMC5572457::"Sirci F, Napolitano F, et al. Comparing structural and transcriptional drug networks reveals signatures of drug activity and toxicity in transcriptional responses. NPJ Syst Biol Appl. 2017;3():23. doi:10.1038/s41540-017-0022-3"
PMC7034053::"Guan Q, Zhan L, et al. Identification of pyrvinium pamoate as an anti-tuberculosis agent in vitro and in vivo by SOSA approach amongst known drugs. Emerg Microbes Infect. 2020;9(1):302-312. doi:10.1080/22221751.2020.1720527"
PMC6912015::"Hu RY, Tian XB, et al. Individualized Drug Repositioning For Rheumatoid Arthritis Using Weighted Kolmogorov–Smirnov Algorithm. Pharmgenomics Pers Med. 2019;12():369-375. doi:10.2147/PGPM.S230751"
PMC6122095::Lajis AF. A Zebrafish Embryo as an Animal Model for the Treatment of Hyperpigmentation in Cosmetic Dermatology Medicine. Medicina (Kaunas). 2018;54(3):35. doi:10.3390/medicina54030035
PMC6593908::"Kocadal K, Saygi S, et al. Drug-associated cardiovascular risks: A retrospective evaluation of withdrawn drugs. North Clin Istanb. 2018;6(2):196-202. doi:10.14744/nci.2018.44977"
PMC6857070::"Zamami Y, Niimura T, et al. Search for Therapeutic Agents for Cardiac Arrest Using a Drug Discovery Tool and Large-Scale Medical Information Database. Front Pharmacol. 2019;10():1257. doi:10.3389/fphar.2019.01257"
PMC6200740::"Readhead B, Hartley BJ, et al. Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat Commun. 2018;9():4412. doi:10.1038/s41467-018-06515-4"
PMID10664885::"Kotyk A, Lapathitis G, et al. Glucose- and K(+)-induced acidification in different yeast species.. Folia Microbiol (Praha). 1999;44(3):295-8. doi:3"
|
MMV1042937 |
CC1=C(C(C)=NO1)S(=O)(=O)N(CC1=CC=C(C=C1)C(=O)NC1CC1)C1CC1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV665941 |
CN(C)c1ccc(cc1)C(c2ccc(cc2)N(C)C)(c3ccc(cc3)N(C)C)O |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7145303::"Müller J, Winzer PA, et al. In Vitro Activities of MMV Malaria Box Compounds against the Apicomplexan Parasite Neospora caninum, the Causative Agent of Neosporosis in Animals. Molecules. 2020;25(6):1460. doi:10.3390/molecules25061460"
PMC5770543::"Subramanian G, Belekar MA, et al. Targeted Phenotypic Screening in Plasmodium falciparum and Toxoplasma gondii Reveals Novel Modes of Action of Medicines for Malaria Venture Malaria Box Molecules. mSphere. 2018;3(1):e00534-17. doi:10.1128/mSphere.00534-17"
PMC5380998::"Lucantoni L, Loganathan S, et al. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci Rep. 2017;7():45992. doi:10.1038/srep45992"
PMC5119023::"Kraft TE, Heitmeier MR, et al. A Novel Fluorescence Resonance Energy Transfer-Based Screen in High-Throughput Format To Identify Inhibitors of Malarial and Human Glucose Transporters. Antimicrob Agents Chemother. 2016;60(12):7407-7414. doi:10.1128/AAC.00218-16"
PMC4879373::"Hostettler I, Müller J, et al. In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria Box Reveals Novel Compounds with Profound Activities against Theileria annulata Schizonts. Antimicrob Agents Chemother. 2016;60(6):3301-3308. doi:10.1128/AAC.02801-15"
PMC4788259::"Stadelmann B, Rufener R, et al. Screening of the Open Source Malaria Box Reveals an Early Lead Compound for the Treatment of Alveolar Echinococcosis. PLoS Negl Trop Dis. 2016;10(3):e0004535. doi:10.1371/journal.pntd.0004535"
PMC4727890::"Bilsland E, Bean DM, et al. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi. PLoS Negl Trop Dis. 2016;10(1):e0004401. doi:10.1371/journal.pntd.0004401"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
PMC4685452::"Vos MW, Stone WJ, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5():18704. doi:10.1038/srep18704"
PMC4639769::"Lucantoni L, Silvestrini F, et al. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds. Sci Rep. 2015;5():16414. doi:10.1038/srep16414"
PMC4847003::"Sykes ML, Avery VM Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes. Int J Parasitol Drugs Drug Resist. 2015;5(3):215-228. doi:10.1016/j.ijpddr.2015.10.001"
PMC4249523::"Ruecker A, Mathias DK, et al. A Male and Female Gametocyte Functional Viability Assay To Identify Biologically Relevant Malaria Transmission-Blocking Drugs. Antimicrob Agents Chemother. 2014;58(12):7292-7302. doi:10.1128/AAC.03666-14"
PMC4206467::"Alemán Resto Y, Fernández Robledo JA Identification of MMV Malaria Box Inhibitors of Perkinsus marinus Using an ATP-Based Bioluminescence Assay. PLoS One. 2014;9(10):e111051. doi:10.1371/journal.pone.0111051"
PMC4144897::"Sanders NG, Sullivan DJ, et al. Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity. PLoS One. 2014;9(8):e105817. doi:10.1371/journal.pone.0105817"
PMC3886923::"Ingram-Sieber K, Cowan N, et al. Orally Active Antischistosomal Early Leads Identified from the Open Access Malaria Box. PLoS Negl Trop Dis. 2014;8(1):e2610. doi:10.1371/journal.pntd.0002610"
PMID31494399::"Rizk MA, El-Sayed SAE, et al. Discovering the in vitro potent inhibitors against Babesia and Theileria parasites by repurposing the Malaria Box: A review.. Vet Parasitol. 2019;274():108895. doi:3"
|
GNF-Pf-445 |
CC1=NC(=C(O1)N2CCCCC2)[P+](C3=CC=CC=C3)(C4=CC=CC=C4)C5=CC=CC=C5 |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7159391:: Poster Session Abstracts. Pediatr Pulmonol. 2016;51(Suppl 45):S194-S485. doi:10.1002/ppul.23576
PMC6195125::"Diedrich D, Stenzel K, et al. One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites. Eur J Med Chem. 2018;158():801-813. doi:10.1016/j.ejmech.2018.09.018"
PMC5650666::"Alexander SP, Fabbro D, et al. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Enzymes. Br J Pharmacol. 2017;174(Suppl Suppl 1):S272-S359. doi:10.1111/bph.13877"
PMC5123381::"Ager C, Reilley M, et al. 31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): part two: National Harbor, MD, USA. 9-13 November 2016. J Immunother Cancer. 2016;4(Suppl 1):107-221. doi:10.1186/s40425-016-0173-6"
PMC5070552::"Ruiz-Castillo P, Buchwald SL Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. doi:10.1021/acs.chemrev.6b00512"
PMC4718211::"Alexander SP, Fabbro D, et al. The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. Br J Pharmacol. 2015;172(24):6024-6109. doi:10.1111/bph.13354"
PMC2722731::"Hancock DB, Romieu I, et al. Genome-Wide Association Study Implicates Chromosome 9q21.31 as a Susceptibility Locus for Asthma in Mexican Children. PLoS Genet. 2009;5(8):e1000623. doi:10.1371/journal.pgen.1000623"
PMC5848146::"Luth MR, Gupta P, et al. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis. 2018;4(3):301-314. doi:10.1021/acsinfecdis.7b00276"
PMC4060398::" 19th Congress of the European Hematology Association, Milan, Italy, June 12–15, 2014. Haematologica. 2014;99(Suppl 1):1-796. doi:"
PMC7111224:: Foot & mouth disease. Clin Microbiol Infect. 2002;8(Suppl 1):1-394. doi:10.1111/j.1469-0691.2002.tb00013.x
|
GNF-Pf-2740 |
[O-][N+](=O)C1=CC=C(O1)C(=O)NC2=CC=C3OC(=NC3=C2)C4=CC=CC5=CC=CC=C45 |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4723716::"Plouffe DM, Wree M, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell Host Microbe. 2016;19(1):114-126. doi:10.1016/j.chom.2015.12.001"
|
GNF-Pf-4577 |
C1=CC=C2C(=C1)C(=O)C3=C(N2)C=CC(=C3)I |
|
PMC3473092::"Meister S, Plouffe DM, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372-1377. doi:10.1126/science.1211936"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC4890880::"Swann J, Corey V, et al. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infect Dis. 2016;2(4):281-293. doi:10.1021/acsinfecdis.5b00143"
PMC6780377::"Ahammad F, Tengku Abd Rashid TR, et al. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms. 2019;7(9):296. doi:10.3390/microorganisms7090296"
PMC3433647::"Spizzo R, Almeida M, et al. Long non-coding RNAs and cancer: a new frontier of translational research?. Oncogene. 2012;31(43):4577-4587. doi:10.1038/onc.2011.621"
|
BI-1388 |
|
|
PMC7229168::"Schön J, Ran W, et al. A modified live bat influenza A virus-based vaccine prototype provides full protection against HPAIV H5N1. NPJ Vaccines. 2020;5():40. doi:10.1038/s41541-020-0185-6"
PMC7236807::"Meng S, Bhetuwal BR, et al. β-Mannosylation via O-Alkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated N-Linked Glycans. European J Org Chem. 2020;2020(15):2291-2301. doi:10.1002/ejoc.202000313"
PMC7203961::"Al-Azmi A, Mahmoud H Facile Synthesis and Antimicrobial Activities of Novel 1,4-Bis(3,5-dialkyl-4H-1,2,4-triazol-4-yl)benzene and 5-Aryltriaz-1-en-1-yl-1-phenyl-1H-pyrazole-4-carbonitrile Derivatives. ACS Omega. 2020;5(17):10160-10166. doi:10.1021/acsomega.0c01001"
PMC7159391:: Poster Session Abstracts. Pediatr Pulmonol. 2016;51(Suppl 45):S194-S485. doi:10.1002/ppul.23576
PMC7149563::"Valentine H, Daugherity EK, et al. The Experimental Use of Syrian Hamsters. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. 2011;():875-906. doi:10.1016/B978-0-12-380920-9.00034-1"
PMC7144206::"Dai L, Chen L, et al. Resveratrol inhibits ACHN cells via regulation of histone acetylation. Pharm Biol. 2020;58(1):231-238. doi:10.1080/13880209.2020.1738503"
PMC7140700::"Kushkevych I, Cejnar J, et al. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9(3):698. doi:10.3390/cells9030698"
PMC7139981::"Andreeva A, Kulesha E, et al. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 2019;48(D1):D376-D382. doi:10.1093/nar/gkz1064"
PMC7123414::Chattopadhyay TK. Advances in Gastrointestinal Surgery. GI Surgery Annual. 2017;22():179-237. doi:10.1007/978-981-10-2010-0_10
PMC7099616::"Human MP, Berger DK, et al. Time-Course RNAseq Reveals Exserohilum turcicum Effectors and Pathogenicity Determinants. Front Microbiol. 2020;11():360. doi:10.3389/fmicb.2020.00360"
PMC7103267:: ESID 2014 ORAL PRESENTATIONS. J Clin Immunol. 2014;34(Suppl 2):139-515. doi:10.1007/s10875-014-0101-9
PMC7099795::"Yao D, Zhan X, et al. A random forest based computational model for predicting novel lncRNA-disease associations. BMC Bioinformatics. 2020;21():126. doi:10.1186/s12859-020-3458-1"
PMC7076288::"Nisenblat V, Bossuyt PM, et al. Blood biomarkers for the non‐invasive diagnosis of endometriosis. Cochrane Database Syst Rev. 2016;2016(5):CD012179. doi:10.1002/14651858.CD012179"
PMC7231838::"Seth S, Debnath S, et al. In silico analysis of functional linkage among arsenic induced MATE genes in rice. Biotechnol Rep (Amst). 2019;26():e00390. doi:10.1016/j.btre.2019.e00390"
PMC7199272::"Politeo N, Pisačić M, et al. Synthesis and crystal structure of a 6-chloronicotinate salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4′-bipyridine. Acta Crystallogr E Crystallogr Commun. 2020;76(Pt 5):599-604. doi:10.1107/S2056989020004193"
PMC7215353::"Ponsuksili S, Reyer H, et al. Identification of the Key Molecular Drivers of Phosphorus Utilization Based on Host miRNA-mRNA and Gut Microbiome Interactions. Int J Mol Sci. 2020;21(8):2818. doi:10.3390/ijms21082818"
PMC7198704::"Nachshon O, Farah R, et al. Decreased Functional Connectivity Between the Left Amygdala and Frontal Regions Interferes With Reading, Emotional, and Executive Functions in Children With Reading Difficulties. Front Hum Neurosci. 2020;14():104. doi:10.3389/fnhum.2020.00104"
PMC7196597::"Sadak MS, Bakry BA Alleviation of drought stress by melatonin foliar treatment on two flax varieties under sandy soil. Physiol Mol Biol Plants. 2020;26(5):907-919. doi:10.1007/s12298-020-00789-z"
PMC6998861::"Koutra K, Vassilaki M, et al. Pregnancy, perinatal and postpartum complications as determinants of postpartum depression: the Rhea mother–child cohort in Crete, Greece. Epidemiol Psychiatr Sci. 2016;27(3):244-255. doi:10.1017/S2045796016001062"
PMC7178849::"Fatemi F, Abdollahi MR, et al. Phytochemical, antioxidant, enzyme activity and antifungal properties of Satureja khuzistanica in vitro and in vivo explants stimulated by some chemical elicitors. Pharm Biol. 2020;58(1):286-296. doi:10.1080/13880209.2020.1743324"
PMID31095676::"Assoumou SA, Tasillo A, et al. Cost-effectiveness and Budgetary Impact of Hepatitis C Virus Testing, Treatment, and Linkage to Care in US Prisons.. Clin Infect Dis. 2020;70(7):1388-1396. doi:3"
PMID32173809::"Ba H, Yahia F, et al. Quality of management of acute coronary syndrome at the Nouakchott National Heart Center (Mauritania).. Tunis Med. 2019;97(12):1383-1388. doi:"
PMID31863971::"Gkolfinopoulou C, Bourtsala A, et al. Structural and functional basis for increased HDL-cholesterol levels due to the naturally occurring V19L mutation in human apolipoprotein A-I.. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(3):158593. doi:3"
PMID31863970::"Martins Cardoso R, Creemers E, et al. Hyperalphalipoproteinemic scavenger receptor BI knockout mice exhibit a disrupted epidermal lipid barrier.. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(3):158592. doi:3"
PMID31050354::"Bi C, Ma Y, et al. Arabidopsis translation initiation factors eIFiso4G1/2 link repression of mRNA cap-binding complex eIFiso4F assembly with RNA-binding protein SOAR1-mediated ABA signaling.. New Phytol. 2019;223(3):1388-1406. doi:3"
PMID32169652::"van der Sluis RJ, Depuydt MAC, et al. VLDL/LDL serves as the primary source of cholesterol in the adrenal glucocorticoid response to food deprivation.. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(7):158682. doi:3"
PMID29846341::"Beal BT, White EK, et al. Patients' Body Image Improves After Mohs Micrographic Surgery for Nonmelanoma Head and Neck Skin Cancer.. Dermatol Surg. 2018;44(11):1380-1388. doi:3"
PMID31319290::"Ossenblok P, van Houdt P, et al. A network approach to investigate the bi-hemispheric synchrony in absence epilepsy.. Clin Neurophysiol. 2019;130(9):1611-1619. doi:3"
PMC7034067::"Dai X, Yang D, et al. Er Miao San, a traditional Chinese herbal formula, attenuates complete Freund’s adjuvant-induced arthritis in rats by regulating Th17/Treg cells. Pharm Biol. 2020;58(1):157-164. doi:10.1080/13880209.2020.1720745"
PMC6727043::"Ivšić T, Bi DW, et al. New refinement of the crystal structure of Zn(NH3)2Cl2 at 100 K. Acta Crystallogr E Crystallogr Commun. 2019;75(Pt 9):1386-1388. doi:10.1107/S2056989019011757"
PMID31176037::"Bennett MK, Wallington-Beddoe CT, et al. Sphingolipids and the unfolded protein response.. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(10):1483-1494. doi:3"
PMID30073716::"Lopez BIM, Song C, et al. Genetic parameters and trends for production traits and their relationship with litter traits in Landrace and Yorkshire pigs.. Anim Sci J. 2018;89(10):1381-1388. doi:3"
PMID31513923::"Kim J, Thompson B, et al. Uptake of HDL-cholesterol contributes to lipid accumulation in clear cell renal cell carcinoma.. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(12):158525. doi:3"
PMID30305247::"Wu R, Liu Y, et al. FTO regulates adipogenesis by controlling cell cycle progression via m<sup>6</sup>A-YTHDF2 dependent mechanism.. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(10):1323-1330. doi:3"
PMC7221527::"Huang Y, Kou S, et al. Facile Fabrication of Z-Scheme Bi2WO6/WO3 Composites for Efficient Photodegradation of Bisphenol A with Peroxymonosulfate Activation. Nanomaterials (Basel). 2020;10(4):724. doi:10.3390/nano10040724"
PMID29522896::"Hong T, Ge Z, et al. Erythropoietin alleviates hepatic steatosis by activating SIRT1-mediated autophagy.. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(6):595-603. doi:3"
PMC7206769::"Kariyawasam PN, Pathirana KD, et al. Factors associated with health related quality of life of patients with stroke in Sri Lankan context. Health Qual Life Outcomes. 2020;18():129. doi:10.1186/s12955-020-01388-y"
PMID29797990::"Chu ZH, Meng BB, et al. [Influence of anti anxiety and anti depression treatment on sudden hearing loss].. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(18):1388-1392. doi:3"
PMC7143402::"Bi J, Tian C, et al. Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence. Foods. 2020;9(3):316. doi:10.3390/foods9030316"
PMID30305246::"Mukhtarova LS, Brühlmann F, et al. Plant hydroperoxide-cleaving enzymes (CYP74 family) function as hemiacetal synthases: Structural proof of hemiacetals by NMR spectroscopy.. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(10):1316-1322. doi:3"
PMC7170498::"Watabe T, Kaneda-Nakashima K, et al. Targeted alpha therapy using astatine (211At)-labeled phenylalanine: A preclinical study in glioma bearing mice. Oncotarget. 2020;11(15):1388-1398. doi:10.18632/oncotarget.27552"
PMC6451213::"Nsanzimana S, Semakula M, et al. Retention in care and virological failure among adult HIV+ patients on second-line ART in Rwanda: a national representative study. BMC Infect Dis. 2019;19():312. doi:10.1186/s12879-019-3934-2"
|
BI-2536 |
CC[C@H]1N(C2CCCC2)C2=C(C=NC(NC3=CC=C(C=C3OC)C(=O)NC3CCN(C)CC3)=N2)N(C)C1=O |
|
PMC7226761::"Adamiok-Ostrowska A, Piekiełko-Witkowska A Ciliary Genes in Renal Cystic Diseases. Cells. 2020;9(4):907. doi:10.3390/cells9040907"
PMC7226117::"Khandekar D, Tiriveedhi V Role of BET Inhibitors in Triple Negative Breast Cancers. Cancers (Basel). 2020;12(4):784. doi:10.3390/cancers12040784"
PMC7214581::"Saber A, Liu B, et al. CRISPR/Cas9 for overcoming drug resistance in solid tumors. Daru. 2019;28(1):295-304. doi:10.1007/s40199-019-00240-z"
PMC7201137::"Chauhan S, Samanta S, et al. Saccharomyces cerevisiae polo-like kinase, Cdc5 exhibits ATP-dependent Mg2+-enhanced kinase activity in vitro. Heliyon. 2019;5(12):e03050. doi:10.1016/j.heliyon.2019.e03050"
PMC7179931::"Abrams EW, Fuentes R, et al. Molecular genetics of maternally-controlled cell divisions. PLoS Genet. 2020;16(4):e1008652. doi:10.1371/journal.pgen.1008652"
PMC7190866::"Kong LR, Ong RW, et al. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Nat Commun. 2020;11():2086. doi:10.1038/s41467-020-15608-y"
PMC7147112::"Mittasch M, Tran VM, et al. Regulated changes in material properties underlie centrosome disassembly during mitotic exit. J Cell Biol. 2020;219(4):e201912036. doi:10.1083/jcb.201912036"
PMC7132033::"Maeda K, Das D, et al. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem. 2019;19(18):1621-1649. doi:10.2174/1568026619666190712204603"
PMC7105471::"Dextras C, Dashnyam M, et al. Identification of Small Molecule Enhancers of Immunotherapy for Melanoma. Sci Rep. 2020;10():5688. doi:10.1038/s41598-020-62369-1"
PMC7097946::"Li Z, Yang C, et al. The dual role of BI 2536, a small-molecule inhibitor that targets PLK1, in induction of apoptosis and attenuation of autophagy in neuroblastoma cells. J Cancer. 2020;11(11):3274-3287. doi:10.7150/jca.33110"
PMC7097665::"Davidson BL, McCray PB Jr Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12(5):329-340. doi:10.1038/nrg2968"
PMC7216841::"Hashemi P, Sadowski I Diversity of small molecule HIV‐1 latency reversing agents identified in low‐ and high‐throughput small molecule screens. Med Res Rev. 2019;40(3):881-908. doi:10.1002/med.21638"
PMC7140619::"Hong CT, Chen KY, et al. Insulin Resistance Promotes Parkinson’s Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells. 2020;9(3):740. doi:10.3390/cells9030740"
PMC7127040::"Andrei G, Carter K, et al. Highlights of the 30th International Conference on Antiviral Research. Antiviral Res. 2017;145():184-196. doi:10.1016/j.antiviral.2017.07.017"
PMC7113694::"Colicino EG, Hehnly H Regulating a key mitotic regulator, polo‐like kinase 1 (PLK1). Cytoskeleton (Hoboken). 2018;75(11):481-494. doi:10.1002/cm.21504"
PMC7042354::"Almawi AW, Langlois-Lemay L, et al. Distinct surfaces on Cdc5/PLK Polo-box domain orchestrate combinatorial substrate recognition during cell division. Sci Rep. 2020;10():3379. doi:10.1038/s41598-020-60344-4"
PMC7060440::"Baboci L, Capolla S, et al. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. J Oncol. 2020;2020():4638192. doi:10.1155/2020/4638192"
PMC7033671::"Larocque E, Chu EF, et al. Nicotinamide–Ponatinib Analogues as Potent Anti-CML and Anti-AML Compounds. ACS Omega. 2020;5(6):2690-2698. doi:10.1021/acsomega.9b03223"
PMC7072436::"Deneka AY, Einarson MB, et al. Synthetic Lethal Targeting of Mitotic Checkpoints in HPV-Negative Head and Neck Cancer. Cancers (Basel). 2020;12(2):306. doi:10.3390/cancers12020306"
PMC6983945::"Serres MP, Samwer M, et al. F-Actin Interactome Reveals Vimentin as a Key Regulator of Actin Organization and Cell Mechanics in Mitosis. Dev Cell. 2020;52(2):210-222.e7. doi:10.1016/j.devcel.2019.12.011"
PMID31620231::"Remillard D, Buckley DL, et al. Dual Inhibition of TAF1 and BET Bromodomains from the BI-2536 Kinase Inhibitor Scaffold.. ACS Med Chem Lett. 2019;10(10):1443-1449. doi:3"
PMC5824842::"Gohda J, Suzuki K, et al. BI-2536 and BI-6727, dual Polo-like kinase/bromodomain inhibitors, effectively reactivate latent HIV-1. Sci Rep. 2018;8():3521. doi:10.1038/s41598-018-21942-5"
PMID28531794::"Fernández-Sainz J, Pacheco-Liñán PJ, et al. Binding of the anticancer drug BI-2536 to human serum albumin. A spectroscopic and theoretical study.. J Photochem Photobiol B. 2017;172():77-87. doi:3"
PMC4499818::"Chen L, Yap JL, et al. BRD4 Structure–Activity Relationships of Dual PLK1 Kinase/BRD4 Bromodomain Inhibitor BI-2536. ACS Med Chem Lett. 2015;6(7):764-769. doi:10.1021/acsmedchemlett.5b00084"
PMID28212994::"Awad MM, Chu QS, et al. An open-label, phase II study of the polo-like kinase-1 (Plk-1) inhibitor, BI 2536, in patients with relapsed small cell lung cancer (SCLC).. Lung Cancer. 2017;104():126-130. doi:3"
PMID24519995::"Oliveira JC, Pezuk JA, et al. PLK1 expression and BI 2536 effects in childhood acute lymphoblastic leukemia.. Pediatr Blood Cancer. 2014;61(7):1227-31. doi:3"
PMC3384428::"Haupenthal J, Bihrer V, et al. Reduced Efficacy of the Plk1 Inhibitor BI 2536 on the Progression of Hepatocellular Carcinoma due to Low Intratumoral Drug Levels. Neoplasia. 2012;14(5):410-419. doi:10.1596/neo.111366"
PMC3791609::"Wu CP, Hsiao SH, et al. Human ABCB1 (P-glycoprotein) and ABCG2 Mediate Resistance to BI 2536, a Potent and Selective Inhibitor of Polo-like Kinase 1. Biochem Pharmacol. 2013;86(7):904-913. doi:10.1016/j.bcp.2013.08.004"
PMC4353234::"Valianou M, Cox AM, et al. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14(3):399-407. doi:10.4161/15384101.2014.986394"
PMC3267594::"Frost A, Mross K, et al. Phase i study of the Plk1 inhibitor BI 2536 administered intravenously on three consecutive days in advanced solid tumours. Curr Oncol. 2012;19(1):e28-e35. doi:10.3747/co.19.866"
PMID22527426::"de Oliveira JC, Brassesco MS, et al. In vitro PLK1 inhibition by BI 2536 decreases proliferation and induces cell-cycle arrest in melanoma cells.. J Drugs Dermatol. 2012;11(5):587-92. doi:"
PMID21822121::"Morales AG, Brassesco MS, et al. BI 2536-mediated PLK1 inhibition suppresses HOS and MG-63 osteosarcoma cell line growth and clonogenicity.. Anticancer Drugs. 2011;22(10):995-1001. doi:3"
PMC2945759::"Lu B, Mahmud H, et al. The Plk1 Inhibitor BI 2536 Temporarily Arrests Primary Cardiac Fibroblasts in Mitosis and Generates Aneuploidy In Vitro . PLoS One. 2010;5(9):e12963. doi:10.1371/journal.pone.0012963"
PMID22658814::"Ellis PM, Chu QS, et al. A phase I open-label dose-escalation study of intravenous BI 2536 together with pemetrexed in previously treated patients with non-small-cell lung cancer.. Clin Lung Cancer. 2013;14(1):19-27. doi:3"
PMID22080235::"Pezuk JA, Brassesco MS, et al. Antiproliferative in vitro effects of BI 2536-mediated PLK1 inhibition on cervical adenocarcinoma cells.. Clin Exp Med. 2013;13(1):75-80. doi:3"
PMID21415595::Eckerdt F. Polo-like kinase 1 inhibitors SBE13 and BI 2536 induce different responses in primary cells.. Cell Cycle. 2011;10(7):1027-8. doi:
PMID22978685::"Vose JM, Friedberg JW, et al. The Plk1 inhibitor BI 2536 in patients with refractory or relapsed non-Hodgkin lymphoma: a phase I, open-label, single dose-escalation study.. Leuk Lymphoma. 2013;54(4):708-13. doi:3"
PMID21516508::"Soto E, Staab A, et al. Comparison of different semi-mechanistic models for chemotherapy-related neutropenia: application to BI 2536 a Plk-1 inhibitor.. Cancer Chemother Pharmacol. 2011;68(6):1517-27. doi:3"
PMID24033250::"Müller-Tidow C, Bug G, et al. A randomized, open-label, phase I/II trial to investigate the maximum tolerated dose of the Polo-like kinase inhibitor BI 2536 in elderly patients with refractory/relapsed acute myeloid leukaemia.. Br J Haematol. 2013;163(2):214-22. doi:3"
PMID28927329::Eckerdt F. Polo-like kinase 1 inhibitors SBE13 and BI 2536 induce different responses in primary cells.. Cell Cycle. 2011;10(7):1031-1030. doi:3
PMID20682708::"Hofheinz RD, Al-Batran SE, et al. An open-label, phase I study of the polo-like kinase-1 inhibitor, BI 2536, in patients with advanced solid tumors.. Clin Cancer Res. 2010;16(18):4666-74. doi:3"
PMID20927084::"Soto E, Staab A, et al. Prediction of neutropenia-related effects of a new combination therapy with the anticancer drugs BI 2536 (a Plk1 inhibitor) and pemetrexed.. Clin Pharmacol Ther. 2010;88(5):660-7. doi:3"
PMID21184800::"Stewart HJ, Kishikova L, et al. The polo-like kinase inhibitor BI 2536 exhibits potent activity against malignant plasma cells and represents a novel therapy in multiple myeloma.. Exp Hematol. 2011;39(3):330-8. doi:3"
PMID20145140::"Gleixner KV, Ferenc V, et al. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536.. Cancer Res. 2010;70(4):1513-23. doi:3"
|
milciclib maleate |
CNC(=O)c1nn(c2c1C(C)(C)Cc1c2nc(nc1)Nc1ccc(cc1)N1CCN(CC1)C)C |
|
PMC6849155::"Kangussu-Marcolino MM, Ehrenkaufer GM, et al. Identification of plicamycin, TG02, panobinostat, lestaurtinib, and GDC-0084 as promising compounds for the treatment of central nervous system infections caused by the free-living amebae Naegleria, Acanthamoeba and Balamuthia. Int J Parasitol Drugs Drug Resist. 2019;11():80-94. doi:10.1016/j.ijpddr.2019.10.003"
PMC6477125::"Jindal A, Thadi A, et al. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J Clin Exp Hepatol. 2019;9(2):221-232. doi:10.1016/j.jceh.2019.01.004"
PMC5864870::"Tan SK, Jermakowicz A, et al. Drug Repositioning in Glioblastoma: A Pathway Perspective. Front Pharmacol. 2018;9():218. doi:10.3389/fphar.2018.00218"
|
MMV1501496 |
CN1C=C/C(=C/C2=[N+](C)C3=CC=CC=C3C=C2)/C4=CC=CC=C41 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV1088520 |
CC(C)N(CC1=CSC(=N1)C1=CC=C(C)O1)CC1=CC=CC=N1 |
|
PMC5571359::"Duffy S, Sykes ML, et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother. 2017;61(9):e00379-17. doi:10.1128/AAC.00379-17"
|
MMV085071 |
COc1cncc(c1)-c1cncc(n1)N1CCN(CC1)c1ccncc1 |
|
PMC7031696::"Murithi JM, Owen ES, et al. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol. 2020;27(2):158-171.e3. doi:10.1016/j.chembiol.2019.11.009"
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC5826141::"Tong JX, Chandramohanadas R, et al. High-Content Screening of the Medicines for Malaria Venture Pathogen Box for Plasmodium falciparum Digestive Vacuole-Disrupting Molecules Reveals Valuable Starting Points for Drug Discovery. Antimicrob Agents Chemother. 2018;62(3):e02031-17. doi:10.1128/AAC.02031-17"
|
Anacetrapib |
COc1cc(F)c(cc1c1ccc(cc1CN1C(=O)O[C@@H]([C@@H]1C)c1cc(cc(c1)C(F)(F)F)C(F)(F)F)C(F)(F)F)C(C)C |
|
PMC7171952::"Schwartz GG, Leiter LA, et al. Dalcetrapib Reduces Risk of New-Onset Diabetes in Patients With Coronary Heart Disease. Diabetes Care. 2020;43(5):1077-1084. doi:10.2337/dc19-2204"
PMC7122375::Kramer W. Antilipidemic Drug Therapy Today and in the Future. Metabolic Control. 2015;233():373-435. doi:10.1007/164_2015_15
PMC7089422::"Richardson TG, Sanderson E, et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020;17(3):e1003062. doi:10.1371/journal.pmed.1003062"
PMC7226587::"Lorkowski SW, Brubaker G, et al. Bariatric Surgery Improves HDL Function Examined by ApoA1 Exchange Rate and Cholesterol Efflux Capacity in Patients with Obesity and Type 2 Diabetes. Biomolecules. 2020;10(4):551. doi:10.3390/biom10040551"
PMC7216641::"Zhang X, Stiekema LC, et al. Metabolic effects of PCSK9 inhibition with Evolocumab in subjects with elevated Lp(a). Lipids Health Dis. 2020;19():91. doi:10.1186/s12944-020-01280-0"
PMC7198830::"Kluck GE, Durham KK, et al. High Density Lipoprotein and Its Precursor Protein Apolipoprotein A1 as Potential Therapeutics to Prevent Anthracycline Associated Cardiotoxicity. Front Cardiovasc Med. 2020;7():65. doi:10.3389/fcvm.2020.00065"
PMC7145772::"Mafham MM, Bowman LJ, et al. Streamlined mail-based methods for large randomised trials: lessons learnt from the ASCEND study. Diabetologia. 2019;63(5):898-905. doi:10.1007/s00125-019-05049-8"
PMC7136892::"Jomard A, Osto E High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med. 2020;7():39. doi:10.3389/fcvm.2020.00039"
PMC7092660::"Long M, Li L Serum Levels of Cystatin C, N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP), and Cardiac Function in Patients with Unstable Angina Pectoris. Med Sci Monit. 2020;26():e920721-1-e920721-9. doi:10.12659/MSM.920721"
PMC7073792::"Menon V, Kumar A, et al. Effect of CETP inhibition with evacetrapib in patients with diabetes mellitus enrolled in the ACCELERATE trial. BMJ Open Diabetes Res Care. 2020;8(1):e000943. doi:10.1136/bmjdrc-2019-000943"
PMC7026728::"Wang X, Chen X, et al. A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation of FoxO1/3 and HNF1α. EBioMedicine. 2020;52():102650. doi:10.1016/j.ebiom.2020.102650"
PMC7041740::"Pan W, Sun W, et al. LDL-C plays a causal role on T2DM: a Mendelian randomization analysis. Aging (Albany NY). 2020;12(3):2584-2594. doi:10.18632/aging.102763"
PMC7016456::"Jawi MM, Frohlich J, et al. Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J Lipids. 2020;2020():3491764. doi:10.1155/2020/3491764"
PMC7005357::"Lee EJ, Kwon SU, et al. Changes in High-Density Lipoprotein Cholesterol and Risks of Cardiovascular Events: A Post Hoc Analysis from the PICASSO Trial. J Stroke. 2020;22(1):108-118. doi:10.5853/jos.2019.02551"
PMC7037452::"Huang J, Wang D, et al. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardiovascular Disease: A New Paradigm for Drug Discovery. Int J Mol Sci. 2020;21(3):739. doi:10.3390/ijms21030739"
PMC7043956::Sung J. The Long and Winding Road: To the Proper Understanding of High-density Lipoprotein. Korean Circ J. 2020;50(3):248-249. doi:10.4070/kcj.2020.0020
PMC6969055::"Burgess S, Foley CN, et al. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat Commun. 2020;11():376. doi:10.1038/s41467-019-14156-4"
PMC7030825::"Cardner M, Yalcinkaya M, et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight. 2020;5(1):e131491. doi:10.1172/jci.insight.131491"
PMC6942309::"Tada H, Okada H, et al. Beneficial effect of ezetimibe-atorvastatin combination therapy in patients with a mutation in ABCG5 or ABCG8 gene. Lipids Health Dis. 2020;19():3. doi:10.1186/s12944-019-1183-4"
PMC6988162::"Manandhar B, Cochran BJ, et al. Role of High‐Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc. 2019;9(1):e013531. doi:10.1161/JAHA.119.013531"
PMC6857080::"Johns DG, Wang S, et al. Impact of drug distribution into adipose on tissue function: The cholesteryl ester transfer protein (CETP) inhibitor anacetrapib as a test case. Pharmacol Res Perspect. 2019;7(6):e00543. doi:10.1002/prp2.543"
PMC6838195::"Wu BJ, Li Y, et al. The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits. Sci Rep. 2019;9():16183. doi:10.1038/s41598-019-52510-0"
PMID32172237::"Taheri H, Filion KB, et al. Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.. Cardiology. 2020;145(4):236-250. doi:3"
PMC6749971::"Hopewell JC, Ibrahim M, et al. Impact of ADCY9 Genotype on Response to Anacetrapib. Circulation. 2019;140(11):891-898. doi:10.1161/CIRCULATIONAHA.119.041546"
PMID30601160::"Grabie M, Tai CH, et al. Is Anacetrapib Better Than Its CETP Inhibitor Counterparts?. Cardiol Rev. 2019;27(5):242-248. doi:3"
PMID31743032::"Stewart AM, Grass ME Practical Approach to Modeling the Impact of Amorphous Drug Nanoparticles on the Oral Absorption of Poorly Soluble Drugs.. Mol Pharm. 2020;17(1):180-189. doi:3"
PMID30567880::"Johns DG, LeVoci L, et al. Characterization of Anacetrapib Distribution into the Lipid Droplet of Adipose Tissue in Mice and Human Cultured Adipocytes.. Drug Metab Dispos. 2019;47(3):227-233. doi:3"
PMID30980857::"Kesisoglou F, Wang M, et al. Effect of Amorphous Nanoparticle Size on Bioavailability of Anacetrapib in Dogs.. J Pharm Sci. 2019;108(9):2917-2925. doi:3"
PMC6245220::"Zhu L, Luu T, et al. CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on a High-Fat Diet. Diabetes. 2018;67(12):2494-2506. doi:10.2337/db18-0474"
PMC6354546::"Armitage J, Holmes MV, et al. Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;73(4):477-487. doi:10.1016/j.jacc.2018.10.072"
PMID30029292::"Krishna R, Gheyas F, et al. Pharmacokinetics and Pharmacodynamics of Anacetrapib in Black and White Healthy Subjects.. J Clin Pharmacol. 2018;58(12):1578-1585. doi:3"
PMID29630000::Doggrell SA. What have we learnt from the clinical outcomes trials with the cetrapibs?. Curr Opin Lipidol. 2018;29(4):327-332. doi:3
PMID31418269::"Dixit SM, Ahsan M, et al. Steering the Lipid Transfer To Unravel the Mechanism of Cholesteryl Ester Transfer Protein Inhibition.. Biochemistry. 2019;58(36):3789-3801. doi:3"
PMID30278356::"Barter PJ, Cochran BJ, et al. CETP inhibition, statins and diabetes.. Atherosclerosis. 2018;278():143-146. doi:3"
PMID29498299::Doggrell SA. Cardiovascular outcomes trial with anacetrapib in subjects with high cardiovascular risk - are major benefits REVEALed?. Expert Opin Pharmacother. 2018;19(6):611-615. doi:3
PMC5724424::"Di Bartolo BA, Nicholls SJ Anacetrapib as a potential cardioprotective strategy. Drug Des Devel Ther. 2017;11():3497-3502. doi:10.2147/DDDT.S114104"
PMID30347344::"Yamashita S, Ruscica M, et al. Cholesteryl ester transfer protein: An enigmatic pharmacology - Antagonists and agonists.. Atherosclerosis. 2018;278():286-298. doi:3"
PMC5750532::"Filippatos TD, Kei A, et al. Anacetrapib, a New CETP Inhibitor: The New Tool for the Management of Dyslipidemias?. Diseases. 2017;5(4):21. doi:10.3390/diseases5040021"
PMID29135318::"Zhou J, Zhang Q, et al. The effect and safety of anacetrapib in the treatment of dyslipidemia: a systematic review and meta-analysis.. Postgrad Med. 2018;130(1):129-136. doi:3"
PMC5972496::"Pareek A, Purkait I, et al. REVEAL Study: Reveals the Limitations of Cholesteryl Ester Transfer Protein Inhibition. Indian J Endocrinol Metab. 2018;22(2):296-297. doi:10.4103/ijem.IJEM_17_18"
PMC5928430::"Shrestha S, Wu BJ, et al. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res. 2018;59(5):772-783. doi:10.1194/jlr.R082735"
PMC5756107::"Tall AR, Rader DJ The Trials and Tribulations of CETP Inhibitors. Circ Res. 2017;122(1):106-112. doi:10.1161/CIRCRESAHA.117.311978"
|
MMV1091186 |
CC1=C(CC(N)=O)SC(SC2=C3C4=C(CCC4)SC3=NC=N2)=N1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
Puromycin |
COC1=CC=C(C[C@H](N)C(=O)N[C@@H]2[C@@H](CO)O[C@H]([C@@H]2O)N2C=NC3=C(N=CN=C23)N(C)C)C=C1 |
|
|
MMV1312865 |
O=C(COc1ccc(cc1)C23CC4CC(CC(C4)C2)C3)N5CCCC5 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
MMV1007245 |
CC1(C)OC2=C(C=C1)C=C(C=C2)C(\N)=N\OC(=O)C1=CC=CC=C1 |
|
PMC6516198::"Antonova-Koch Y, Meister S, et al. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science. 2018;362(6419):eaat9446. doi:10.1126/science.aat9446"
|
SQ109 |
CC(=CCCC(=CCNCCNC1C2CC3CC(C2)CC1C3)C)C |
PF3D7_0711000::AAA+family+ATPase%2C+CDC48+subfamily+%28Cdc48%29::SNP::Pf3D7_07_v3::488912::p.Asp687Asn/c.2059G>A
PF3D7_1311900::vacuolar+ATP+synthase+subunit+a+%28vapA%29::SNP::Pf3D7_13_v3::508572::p.Gln225Lys/c.673C>A
PF3D7_1311900::vacuolar+ATP+synthase+subunit+a+%28vapA%29::SNP::Pf3D7_13_v3::508957::p.Arg353Lys/c.1058G>A
PF3D7_0113600::surface-associated+interspersed+protein+1.2+%28SURFIN+1.2%29%2C+pseudogene+%28SURF1.2%29::INDEL::Pf3D7_01_v3::514421::p.Thr788_Thr792del/c.2363_2377delCATCAGGTCCTACAA
PF3D7_0216000::DEAD%2FDEAH+box+helicase%2C+putative::INDEL::Pf3D7_02_v3::660299::p.Ile559fs/c.1675delA
PF3D7_0424300::erythrocyte+binding+antigen-165%2C+pseudogene+%28EBA165%29::INDEL::Pf3D7_04_v3::1097577::p.Glu1379_Glu1383del/c.4137_4151delAGCTAATTTTGAAGA
|
PMC7223789::"Butler MS, Paterson DL Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo). 2020;73(6):329-364. doi:10.1038/s41429-020-0291-8"
PMC7195194::"Ravindran R, Chakrapani G, et al. Inhibitory activity of traditional plants against Mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)—A cell division protein. PLoS One. 2020;15(5):e0232482. doi:10.1371/journal.pone.0232482"
PMC7183353::"Mtabho CM, Semvua HH, et al. Effect of diabetes mellitus on TB drug concentrations in Tanzanian patients. J Antimicrob Chemother. 2019;74(12):3537-3545. doi:10.1093/jac/dkz368"
PMC7096427::"Tateishi Y, Minato Y, et al. Genome-wide identification of essential genes in Mycobacterium intracellulare by transposon sequencing — Implication for metabolic remodeling. Sci Rep. 2020;10():5449. doi:10.1038/s41598-020-62287-2"
PMC7215093::"Huszár S, Chibale K, et al. The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discov Today. 2020;25(4):772-780. doi:10.1016/j.drudis.2020.02.003"
PMC7157236::"Krzyżek P, Grande R Transformation of Helicobacter pylori into Coccoid Forms as a Challenge for Research Determining Activity of Antimicrobial Substances. Pathogens. 2020;9(3):184. doi:10.3390/pathogens9030184"
PMC7104029::"Choi WH, Lee IA The anti-tubercular activity of Melia azedarach L. and Lobelia chinensis Lour. and their potential as effective anti-Mycobacterium tuberculosis candidate agents. Asian Pac J Trop Biomed. 2016;6(10):830-835. doi:10.1016/j.apjtb.2016.08.007"
PMC7040492::"Benaim G, Paniz-Mondolfi AE, et al. Disruption of Intracellular Calcium Homeostasis as a Therapeutic Target Against Trypanosoma cruzi. Front Cell Infect Microbiol. 2020;10():46. doi:10.3389/fcimb.2020.00046"
PMC7020342::"Nabisere R, Musaazi J, et al. Pharmacokinetics, SAfety/tolerability, and EFficacy of high-dose RIFampicin in tuberculosis-HIV co-infected patients on efavirenz- or dolutegravir-based antiretroviral therapy: study protocol for an open-label, phase II clinical trial (SAEFRIF). Trials. 2020;21():181. doi:10.1186/s13063-020-4132-7"
PMC7000671::"Bottai D, Frigui W, et al. TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nat Commun. 2020;11():684. doi:10.1038/s41467-020-14508-5"
PMC6930263::"Al-Wahaibi LH, Joubert J, et al. Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4-chlorobenzyl)sulfanyl]-4-methyl-4H-1,2,4-triazole, a potential 11β-HSD1 inhibitor. Sci Rep. 2019;9():19745. doi:10.1038/s41598-019-56331-z"
PMC6953336::"Grace AG, Mittal A, et al. Shortened treatment regimens versus the standard regimen for drug‐sensitive pulmonary tuberculosis. Cochrane Database Syst Rev. 2019;2019(12):CD012918. doi:10.1002/14651858.CD012918.pub2"
PMC6930481::"Al-Mutairi AA, Al-Alshaikh MA, et al. Synthesis, Antimicrobial, and Anti-Proliferative Activities of Novel 4-(Adamantan-1-yl)-1-arylidene-3-thiosemicarbazides, 4-Arylmethyl N′-(Adamantan-1-yl)piperidine-1-carbothioimidates, and Related Derivatives. Molecules. 2019;24(23):4308. doi:10.3390/molecules24234308"
PMC6879242::"Hendon-Dunn CL, Pertinez H, et al. Regrowth of Mycobacterium tuberculosis Populations Exposed to Antibiotic Combinations Is Due to the Presence of Isoniazid and Not Bacterial Growth Rate. Antimicrob Agents Chemother. 2019;63(12):e00570-19. doi:10.1128/AAC.00570-19"
PMC6851285::"Ma S, Jaipalli S, et al. Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis. mBio. 2019;10(6):e02627-19. doi:10.1128/mBio.02627-19"
PMID31897791::"Gil Z, Martinez-Sotillo N, et al. SQ109 inhibits proliferation of Leishmania donovani by disruption of intracellular Ca<sup>2+</sup> homeostasis, collapsing the mitochondrial electrochemical potential (ΔΨ<sub>m</sub>) and affecting acidocalcisomes.. Parasitol Res. 2020;119(2):649-657. doi:3"
PMC6542525::The PLOS ONE Staff. Correction: Artificial intelligence enabled parabolic response surface platform identifies ultra-rapid near-universal TB drug treatment regimens comprising approved drugs. PLoS One. 2019;14(5):e0217670. doi:10.1371/journal.pone.0217670
PMC6761528::"Korycka-Machała M, Viljoen A, et al. 1H-Benzo[d]Imidazole Derivatives Affect MmpL3 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63(10):e00441-19. doi:10.1128/AAC.00441-19"
PMID32435364::"Touitou M, Manetti F, et al. Improving the Potency of <i>N</i>-Aryl-2,5-dimethylpyrroles against Multidrug-Resistant and Intracellular Mycobacteria.. ACS Med Chem Lett. 2020;11(5):638-644. doi:3"
PMC6510528::"Clemens DL, Lee BY, et al. Artificial intelligence enabled parabolic response surface platform identifies ultra-rapid near-universal TB drug treatment regimens comprising approved drugs. PLoS One. 2019;14(5):e0215607. doi:10.1371/journal.pone.0215607"
PMC6021632::"Zheng H, Williams JT, et al. HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter. Antimicrob Agents Chemother. 2018;62(7):e02459-17. doi:10.1128/AAC.02459-17"
PMC6235396::"Lee BY, Clemens DL, et al. Ultra-rapid near universal TB drug regimen identified via parabolic response surface platform cures mice of both conventional and high susceptibility. PLoS One. 2018;13(11):e0207469. doi:10.1371/journal.pone.0207469"
PMC6580365::"Li W, Stevens CM, et al. Direct Inhibition of MmpL3 by Novel Antitubercular Compounds. ACS Infect Dis. 2019;5(6):1001-1012. doi:10.1021/acsinfecdis.9b00048"
PMID31254295::"Bahuguna A, Rawat DS An overview of new antitubercular drugs, drug candidates, and their targets.. Med Res Rev. 2020;40(1):263-292. doi:3"
PMID30682372::"Zhang B, Li J, et al. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target.. Cell. 2019;176(3):636-648.e13. doi:3"
PMC6627145::"Torfs E, Piller T, et al. Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. Int J Mol Sci. 2019;20(12):2868. doi:10.3390/ijms20122868"
PMC6988120::"Horwitz MA, Clemens DL, et al. AI-Enabled Parabolic Response Surface Approach Identifies Ultra Short-Course Near-Universal TB Drug Regimens. Adv Ther (Weinh). 2019;():1900086. doi:10.1002/adtp.201900086"
PMC5038243::"García-García V, Oldfield E, et al. Inhibition of Leishmania mexicana Growth by the Tuberculosis Drug SQ109. Antimicrob Agents Chemother. 2016;60(10):6386-6389. doi:10.1128/AAC.00945-16"
PMID28162983::"de Knegt GJ, van der Meijden A, et al. Activity of moxifloxacin and linezolid against Mycobacterium tuberculosis in combination with potentiator drugs verapamil, timcodar, colistin and SQ109.. Int J Antimicrob Agents. 2017;49(3):302-307. doi:3"
PMC6005123::"Svensson EM, Svensson RJ, et al. The Potential for Treatment Shortening With Higher Rifampicin Doses: Relating Drug Exposure to Treatment Response in Patients With Pulmonary Tuberculosis. Clin Infect Dis. 2018;67(1):34-41. doi:10.1093/cid/ciy026"
PMC5924460::"Rodriguez-Rivera FP, Zhou X, et al. Acute modulation of mycobacterial cell envelope biogenesis by front-line TB drugs. Angew Chem Int Ed Engl. 2018;57(19):5267-5272. doi:10.1002/anie.201712020"
PMID28703701::"McNeil MB, Dennison D, et al. Mutations in MmpL3 alter membrane potential, hydrophobicity and antibiotic susceptibility in Mycobacterium smegmatis.. Microbiology. 2017;163(7):1065-1070. doi:3"
PMC6048240::"Li W, Yazidi A, et al. MmpL3 as a Target for the Treatment of Drug-Resistant Nontuberculous Mycobacterial Infections. Front Microbiol. 2018;9():1547. doi:10.3389/fmicb.2018.01547"
PMC7179463::"Stelitano G, Sammartino JC, et al. Multitargeting Compounds: A Promising Strategy to Overcome Multi-Drug Resistant Tuberculosis. Molecules. 2020;25(5):1239. doi:10.3390/molecules25051239"
PMC7105635::"Cicchese JM, Dartois V, et al. Both Pharmacokinetic Variability and Granuloma Heterogeneity Impact the Ability of the First-Line Antibiotics to Sterilize Tuberculosis Granulomas. Front Pharmacol. 2020;11():333. doi:10.3389/fphar.2020.00333"
PMC7126926::"Alvin A, Miller KI, et al. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res. 2014;169(7):483-495. doi:10.1016/j.micres.2013.12.009"
PMC7046183::"Lienhardt C, Nunn A, et al. Advances in clinical trial design: Weaving tomorrow’s TB treatments. PLoS Med. 2020;17(2):e1003059. doi:10.1371/journal.pmed.1003059"
PMC7045498::"Lubanyana H, Arvidsson PI, et al. Improved Synthesis and Isolation of Bedaquiline. ACS Omega. 2020;5(7):3607-3611. doi:10.1021/acsomega.9b04037"
PMC6658742::"McNeil MB, Cook GM Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63(8):e00629-19. doi:10.1128/AAC.00629-19"
PMC6761494::"Williams JT, Haiderer ER, et al. Identification of New MmpL3 Inhibitors by Untargeted and Targeted Mutant Screens Defines MmpL3 Domains with Differential Resistance. Antimicrob Agents Chemother. 2019;63(10):e00547-19. doi:10.1128/AAC.00547-19"
PMC6760628::"Grzelak EM, Choules MP, et al. Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening. J Antibiot (Tokyo). 2019;72(10):719-728. doi:10.1038/s41429-019-0205-9"
PMID28724167::"Vlachou M, Siamidi A, et al. In vitro Controlled Release of two new Tuberculocidal Adamantane Aminoethers from Solid Pharmaceutical Formulations (II).. Drug Res (Stuttg). 2017;67(11):653-660. doi:3"
|
MMV006767 |
COC1=CC2=CC(C(=O)NC3=CC=CC=C3)=C(N)N=C2C=C1OC |
PF3D7_0709000::chloroquine+resistance+transporter+%28CRT%29::SNP::Pf3D7_07_v3::403591::S65R
PF3D7_0212800::multidrug+efflux+pump%2C+putative::INDEL::Pf3D7_02_v3::531029::KNYGNN928-
PF3D7_1352000::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_13_v3::2072465::CNKNDYDY1050C
PF3D7_0709000::chloroquine+resistance+transporter+%28CRT%29::SNP::Pf3D7_07_v3::403990::A138V
PF3D7_0824400::nucleoside+transporter+2+%28NT2%29::INDEL::Pf3D7_08_v3::1063502::-187
PF3D7_1147700::mitochondrial+ATP+synthase+delta+subunit%2C+putative::INDEL::Pf3D7_11_v3::1897825::
PF3D7_1467600::conserved+Plasmodium+protein%2C+unknown+function::INDEL::Pf3D7_14_v3::2760115::N1345KMKI
|
PMC5925756::"Cowell AN, Istvan ES, et al. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191-199. doi:10.1126/science.aan4472"
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC7196193::"Malebo HM, D’Alessandro S, et al. In vitro Multistage Malaria Transmission Blocking Activity of Selected Malaria Box Compounds. Drug Des Devel Ther. 2020;14():1593-1607. doi:10.2147/DDDT.S242883"
PMC4794828::"Ahyong V, Sheridan CM, et al. Identification of Plasmodium falciparum specific translation inhibitors from the MMV Malaria Box using a high throughput in vitro translation screen. Malar J. 2016;15():173. doi:10.1186/s12936-016-1231-8"
PMC4635989::"Linares M, Viera S, et al. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14():441. doi:10.1186/s12936-015-0962-2"
PMC4486462::"Fong KY, Sandlin RD, et al. Identification of β-hematin inhibitors in the MMV Malaria Box. Int J Parasitol Drugs Drug Resist. 2015;5(3):84-91. doi:10.1016/j.ijpddr.2015.05.003"
|
Lomitapide |
O=C(c1ccccc1c1ccc(cc1)C(F)(F)F)NC1CCN(CC1)CCCCC1(C(=O)NCC(F)(F)F)c2ccccc2c2c1cccc2 |
|
PMC7238995::"Ruscica M, Corsini A, et al. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res. 2020;():104916. doi:10.1016/j.phrs.2020.104916"
PMC7201678::"Crismaru I, Pantea Stoian A, et al. Low-density lipoprotein cholesterol lowering treatment: the current approach. Lipids Health Dis. 2020;19():85. doi:10.1186/s12944-020-01275-x"
PMC7204727::"Banach M, Penson PE, et al. Brief recommendations on the management of adult patients with familial hypercholesterolemia during the COVID-19 pandemic. Pharmacol Res. 2020;():104891. doi:10.1016/j.phrs.2020.104891"
PMC7180468::"de Sousa AC, Maepa K, et al. Lapatinib, Nilotinib and Lomitapide Inhibit Haemozoin Formation in Malaria Parasites. Molecules. 2020;25(7):1571. doi:10.3390/molecules25071571"
PMC7149354::"Ueda M, Wolska A, et al. Experimental Therapeutics for Challenging Clinical Care of a Patient with an Extremely Rare Homozygous APOC2 Mutation. Case Rep Endocrinol. 2020;2020():1865489. doi:10.1155/2020/1865489"
PMC7127402::"Kumar R, Harilal S, et al. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur J Med Chem. 2019;182():111602. doi:10.1016/j.ejmech.2019.111602"
PMC7125181::"Dao Thi VL, Wu X, et al. Stem cell-derived polarized hepatocytes. Nat Commun. 2020;11():1677. doi:10.1038/s41467-020-15337-2"
PMC7122375::Kramer W. Antilipidemic Drug Therapy Today and in the Future. Metabolic Control. 2015;233():373-435. doi:10.1007/164_2015_15
PMC7237602::"Furtado RH, Giugliano RP What Lessons Have We Learned and What Remains to be Clarified for PCSK9 Inhibitors? A Review of FOURIER and ODYSSEY Outcomes Trials. Cardiol Ther. 2020;9(1):59-73. doi:10.1007/s40119-020-00163-w"
PMC7233637::"Geraldo K, Vincenza P, et al. Genetics and pharmacogenetics in the diagnosis and therapy of cardiovascular diseases. Acta Biomed. 2020;90(Suppl 10):7-19. doi:10.23750/abm.v90i10-S.8748"
PMC7216641::"Zhang X, Stiekema LC, et al. Metabolic effects of PCSK9 inhibition with Evolocumab in subjects with elevated Lp(a). Lipids Health Dis. 2020;19():91. doi:10.1186/s12944-020-01280-0"
PMC7154986::"Stine JG, Schreibman I, et al. Nonalcoholic steatohepatitis Fitness Intervention in Thrombosis (NASHFit): Study protocol for a randomized controlled trial of a supervised aerobic exercise program to reduce elevated clotting risk in patients with NASH. Contemp Clin Trials Commun. 2020;18():100560. doi:10.1016/j.conctc.2020.100560"
PMC7083132::"Stahel P, Xiao C, et al. Role of the Gut in Diabetic Dyslipidemia. Front Endocrinol (Lausanne). 2020;11():116. doi:10.3389/fendo.2020.00116"
PMC7047050::"Littmann K, Szummer K, et al. Lomitapide treatment in a female with homozygous familial hypercholesterolaemia: a case report. Eur Heart J Case Rep. 2020;4(1):1-6. doi:10.1093/ehjcr/ytaa020"
PMC7011550::"Dron JS, Wang J, et al. Six years’ experience with LipidSeq: clinical and research learnings from a hybrid, targeted sequencing panel for dyslipidemias. BMC Med Genomics. 2020;13():23. doi:10.1186/s12920-020-0669-2"
PMC7016456::"Jawi MM, Frohlich J, et al. Lipoprotein(a) the Insurgent: A New Insight into the Structure, Function, Metabolism, Pathogenicity, and Medications Affecting Lipoprotein(a) Molecule. J Lipids. 2020;2020():3491764. doi:10.1155/2020/3491764"
PMC7019873::"Di Taranto MD, Giacobbe C, et al. A Real-World Experience of Clinical, Biochemical and Genetic Assessment of Patients with Homozygous Familial Hypercholesterolemia. J Clin Med. 2020;9(1):219. doi:10.3390/jcm9010219"
PMC6976911::"Rikhi R, Singh T, et al. Work up of fatty liver by primary care physicians, review. Ann Med Surg (Lond). 2020;50():41-48. doi:10.1016/j.amsu.2020.01.001"
PMC7040511::"Al-Rasadi K, Alhabib KF, et al. The Gulf Familial Hypercholesterolemia Registry (Gulf FH): Design, Rationale and Preliminary Results. Curr Vasc Pharmacol. 2020;18(1):57-64. doi:10.2174/1570161116666181005125459"
PMC6925215::"Moran M, Cheng X, et al. Transcriptome analysis-identified long noncoding RNA CRNDE in maintaining endothelial cell proliferation, migration, and tube formation. Sci Rep. 2019;9():19548. doi:10.1038/s41598-019-56030-9"
PMID32011344::"D'Erasmo L, Di Costanzo A, et al. Autosomal recessive hypercholesterolemia: update for 2020.. Curr Opin Lipidol. 2020;31(2):56-61. doi:3"
PMID32452920::"Handhle A, Viljoen A, et al. Low cholesterol syndrome and drug development.. Curr Opin Cardiol. 2020;():. doi:3"
PMID31741187::"Blom DJ, Raal FJ, et al. Lomitapide and Mipomersen-Inhibiting Microsomal Triglyceride Transfer Protein (MTP) and apoB100 Synthesis.. Curr Atheroscler Rep. 2019;21(12):48. doi:3"
PMID32088152::"Suppressa P, Carbonara C, et al. Homozygous familial hypercholesterolemia in a young woman with dual gene mutations of low-density lipoprotein receptor and proprotein convertase subtilisin/kexin type 9.. J Clin Lipidol. 2020;14(2):192-196. doi:3"
PMID32363959::"Gupta M, Blumenthal C, et al. Novel emerging therapies in atherosclerosis targeting lipid metabolism.. Expert Opin Investig Drugs. 2020;():1-12. doi:3"
PMID32332430::"Bajaj A, Cuchel M Homozygous familial hypercholesterolemia: what treatments are on the horizon?. Curr Opin Lipidol. 2020;31(3):119-124. doi:3"
PMC6615460::"Alonso R, Cuevas A, et al. Lomitapide: a review of its clinical use, efficacy, and tolerability. Core Evid. 2019;14():19-30. doi:10.2147/CE.S174169"
PMID31403880::"Kolovou G, Diakoumakou O, et al. Microsomal triglyceride transfer protein inhibitor (lomitapide) efficacy in the treatment of patients with homozygous familial hypercholesterolaemia.. Eur J Prev Cardiol. 2020;27(2):157-165. doi:3"
PMC6824397::"Ben-Omran T, Masana L, et al. Real-World Outcomes with Lomitapide Use in Paediatric Patients with Homozygous Familial Hypercholesterolaemia. Adv Ther. 2019;36(7):1786-1811. doi:10.1007/s12325-019-00985-8"
PMID31604399::"Kim SH, Baek SH Lomitapide, relief pitcher for patients with homozygous familial hypercholesterolemia.. Eur J Prev Cardiol. 2020;27(2):155-156. doi:3"
PMID30945578::"Khoury E, Brisson D, et al. Review of the long-term safety of lomitapide: a microsomal triglycerides transfer protein inhibitor for treating homozygous familial hypercholesterolemia.. Expert Opin Drug Saf. 2019;18(5):403-414. doi:3"
PMID30948303::"Chacra APM, Ferrari MC, et al. Case report: The efficacy and safety of lomitapide in a homozygous familial hypercholesterolemic child.. J Clin Lipidol. 2019;13(3):397-401. doi:3"
PMID31655942::"Wu MF, Xu KZ, et al. Lipoprotein(a) and Atherosclerotic Cardiovascular Disease: Current Understanding and Future Perspectives.. Cardiovasc Drugs Ther. 2019;33(6):739-748. doi:3"
PMID30663562::"Giammanco A, Cefalù AB, et al. Therapeutic options for homozygous familial hypercholesterolemia: the role of Lomitapide.. Curr Med Chem. 2019;():. doi:3"
PMID30847681::Reiner Ž. Can Lp(a) Lowering Against Background Statin Therapy Really Reduce Cardiovascular Risk?. Curr Atheroscler Rep. 2019;21(4):14. doi:3
PMC6456458::"Nohara A, Otsubo Y, et al. Safety and Efficacy of Lomitapide in Japanese Patients with Homozygous Familial Hypercholesterolemia (HoFH): Results from the AEGR-733-301 Long-Term Extension Study. J Atheroscler Thromb. 2019;26(4):368-377. doi:10.5551/jat.45708"
PMC6011273::"Blom DJ, Cuchel M, et al. Target achievement and cardiovascular event rates with Lomitapide in homozygous Familial Hypercholesterolaemia. Orphanet J Rare Dis. 2018;13():96. doi:10.1186/s13023-018-0841-3"
PMID30933542::"Polychronopoulos G, Tziomalos K What special considerations must be made for the pharmacotherapeutic management of heterozygous familial hypercholesterolemia?. Expert Opin Pharmacother. 2019;20(10):1175-1180. doi:3"
PMC6308262::"Kameyama N, Maruyama C, et al. Dietary Intake during 56 Weeks of a Low-Fat Diet for Lomitapide Treatment in Japanese Patients with Homozygous Familial Hypercholesterolemia. J Atheroscler Thromb. 2019;26(1):72-83. doi:10.5551/jat.44107"
PMID30702996::"Hegele RA, Tsimikas S Lipid-Lowering Agents.. Circ Res. 2019;124(3):386-404. doi:3"
|
MMV007977 |
c1ccc2c(c1)c(=O)nc(o2)/C=C/c3ccc(cc3)Cl |
|
|
DDD01061024 |
CC1=CC=C(C=C1)C1=CC=C(N=C1)C1CNCCO1 |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV019721 |
CCN(CC)S(=O)(=O)c1ccc(Cl)c(c1)C(=O)Nc1ccc2nc(C)sc2c1 |
::::SNP::Pf3D7_01_v3::6067::n.6067A>G
::::SNP::Pf3D7_03_v3::1059585::
::::SNP::Pf3D7_03_v3::1059591::
::::SNP::Pf3D7_04_v3::1192303::
PF3D7_0627800::acetyl CoA+synthetase%2C+putative+%28ACS%29::SNP::Pf3D7_06_v3::1115748::p.Ala597Val/c.1790C>T
PF3D7_0922800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::930905::p.Asn1385Asn/c.4155C>T
PF3D7_0922800::conserved+Plasmodium+protein%2C+unknown+function::SNP::Pf3D7_09_v3::930917::p.Asn1381Asn/c.4143T>C
::::SNP::Pf3D7_09_v3::1534812::
::::SNP::Pf3D7_10_v3::1666870::
::::SNP::Pf3D7_10_v3::1666871::
::::SNP::Pf3D7_10_v3::1666877::
::::SNP::Pf3D7_10_v3::1666879::
::::SNP::Pf3D7_12_v3::13097::n.13097A>G
::::SNP::Pf3D7_12_v3::13103::n.13103C>G
PF3D7_1400700::stevor%2CPIR+protein::SNP::Pf3D7_14_v3::24911::p.Val103Gly/c.308T>G
::::INDEL::Pf3D7_02_v3::22467::n.22468_22470delCAA
::::INDEL::Pf3D7_03_v3::1059592::
::::INDEL::Pf3D7_04_v3::1192288::
::::INDEL::Pf3D7_08_v3::8186::n.8187_8189delCTT
::::INDEL::Pf3D7_12_v3::11595::n.11596_11606delCATTTACTAAC
::::INDEL::Pf3D7_12_v3::11608::n.11609_11618delAGGTCTTAAC
PF3D7_1400700::stevor%2CPIR+protein::INDEL::Pf3D7_14_v3::24922::p.Val99_Thr100insGlu/c.296_297insGGA
|
PMC6332852::"Tougan T, Toya Y, et al. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18():8. doi:10.1186/s12936-019-2642-0"
PMC5571359::"Duffy S, Sykes ML, et al. Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother. 2017;61(9):e00379-17. doi:10.1128/AAC.00379-17"
|
DDD01057375 |
COC1=CC(C(NCC2(N(C)C)CCN(CC2)C)=O)=C3C=CC=CC3=N1 |
|
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
|
MMV666687 |
COc1cc(cc(OC)c1OC)C(=O)ON=C(N)Cc1cccc2ccccc12 |
|
PMC4965013::"Van Voorhis WC, Adams JH, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog. 2016;12(7):e1005763. doi:10.1371/journal.ppat.1005763"
PMC4912613::"Corey VC, Lukens AK, et al. A broad analysis of resistance development in the malaria parasite. Nat Commun. 2016;7():11901. doi:10.1038/ncomms11901"
PMC7155171::"Abraham M, Gagaring K, et al. Probing the Open Global Health Chemical Diversity Library for Multistage-Active Starting Points for Next-Generation Antimalarials. ACS Infect Dis. 2020;6(4):613-628. doi:10.1021/acsinfecdis.9b00482"
PMC3910863::"Bowman JD, Merino EF, et al. Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box. Antimicrob Agents Chemother. 2014;58(2):811-819. doi:10.1128/AAC.01500-13"
|
MMV1094822 |
[O-][N+]1=CC=CC=C1SCCS(=O)(=O)OC1=CC=CC=C1 |
|
|